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It is sometimes supposed that category learning involves competing explicit and procedural systems, with
only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained
for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be
learned procedurally) category structures. Both experiments (total N � 160) demonstrated that partici-
pants with higher WMC tended to be more accurate in condensation tasks, but not less accurate in
filtering tasks. Furthermore, state-trace analysis did not find a differential influence of WMC on
performance in these tasks. Finally, inspection of the mixture of response strategies at play across the 2
conditions and 3 blocks showed only a minor influence of WMC, and then only on later training blocks.
The results provide no support for the existence of a “system” of category learning that is independent
of working memory and are instead consistent with most single-system interpretations of category
learning.
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Categorization is a ubiquitous cognitive challenge. Even con-
sidering only those categorical discriminations that depend on
perceptual features, there is a vast range of different kinds of
categories to be learned, from the names of polygons to the sexes
of chicks (Horsey, 2002), The flexibility and the variability in the
ways people learn new categorical discriminations are often
thought to require the operation of at least two independent pro-
cessing modes or systems (e.g., Ashby, Paul, & Maddox, 2011;
Minda & Miles, 2010). This account, exemplified by the COVIS
computational model (Ashby et al., 2011), highlights a distinction
between a system that allows people to learn via simple rules, and
a second system that allows people to learn through stimulus–
response associations. This distinction is claimed to capture prop-
erties of real world categories where some things can be classified
with verbal rules (e.g., squares vs. triangles) but others, sometimes,
cannot (e.g., whether an X-ray depicts a tumor; Ashby & Maddox,
2005). However, many have argued that the flexibility and variety
of categorization do not necessitate a commitment to multiple

distinct processing systems (e.g., Dunn, Newell, & Kalish, 2012;
Lewandowsky, 2011; Newell & Dunn, 2008; Newell, Dunn, &
Kalish, 2010, 2011; Newell, Lagnado, & Shanks, 2007; Nosofsky
& Zaki, 1998; Palmeri & Flanery, 2002; Speekenbrink, Channon,
& Shanks, 2008). Distinguishing one system from two is always
difficult, and depends critically on the properties of the proposed
multiple systems (Dunn, Kalish, & Newell, 2014).

In the case of perceptual categorization, COVIS proposes that a
central feature of the rule-based system is its dependence on
working memory capacity (WMC). Rules are said to be held in
declarative memory, so that people with higher WMC are better
able to acquire, maintain, and switch between categorization rules.
For COVIS, this is the fundamental quality of the rule-based
system that discriminates it from a proposed procedural system,
which operates implicitly, without awareness, and independently
of any WMC constraints. The current view of the procedural
system is that it learns by associating category labels with
exemplar-centered regions of perceptual space (Ashby et al.,
2011).

The original impetus for the present experiments is a set of
counterintuitive results reported by DeCaro, Thomas, and Beilock
(2008). In their experiment, participants learned one of two cate-
gorization tasks, defined over a common type of stimulus. Partic-
ipants could solve one kind of task, which DeCaro et al. called
“rule-based,” by attending to the values of just one stimulus
dimension. The other, which they called “information-integration,”
required use of multiple dimensions. Because these names pre-
judge the nature of the classification strategies people might use to
solve the respective tasks, we use an older terminology for the
single versus multiple dimension distinction: filtering versus con-
densation (Gottwald & Garner, 1975; Kruschke, 1993; Posner,
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1964). Filtering tasks are those where it is necessary (or at least,
helpful) to filter out one dimension in order to classify items
correctly (Posner, 1964, called these gating tasks), and condensa-
tion tasks are those where both dimensions must be evaluated and
the results condensed into one judgment. Drawing on the COVIS
model of category learning (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Ashby et al., 2011), DeCaro et al. predicted that
higher WMC would be beneficial for learning filtering tasks but
detrimental for learning condensation tasks.

This rather counterintuitive prediction falls out of the COVIS
model because of a secondary assumption of the multiple systems
theory. Ashby et al. (2011) hypothesize that the two category-
learning systems compete, such that only one can provide a re-
sponse for the learner to emit at any given point in time. At the
outset of learning a new task the competition is biased in favor of
the rule-based system, so that early responses are due to its action.
If this system is successful in learning the categorization rule, then
its responses continue to be used to classify the stimuli. If, how-
ever, it receives consistently negative feedback (i.e., successive
rules are tested but none are consistently correct) then control over
behavior eventually switches to the procedural system which has
been learning in the background the whole time. Working memory
capacity modulates the initial bias toward the rule-based system;
people high in WMC have a stronger bias to use their rule-based
system, in part because that system works well for them due to its
dependence on WMC. Thus, DeCaro et al. (2008) proposed those
participants with higher WMC are likely to persist in the testing of
(ultimately futile) rules in the condensation tasks, thus taking
longer to relinquish control to the more task-appropriate proce-
dural system and so actually slowing learning relative to partici-
pants with lower WMC. DeCaro et al. indeed found that partici-
pants with higher WMC took fewer trials than those with lower
WMC to reach a learning criterion in a filtering task but more trials
in a condensation task.

DeCaro et al.’s (2008) counterintuitive finding was quickly
revised, however. Tharp and Pickering (2009) showed in a reanal-
ysis, using a less stringent criterion for data inclusion, that higher
WMC led to quicker learning in both tasks. DeCaro, Carlson,
Thomas, and Beilock (2009) replicated this result, and also showed
that low WMC individuals perseverated with suboptimal rule-
based strategies in just the manner originally predicted for high
WMC individuals.

Three additional studies have directly questioned COVIS’s pre-
dictions about the role of WMC in mediating the relative influence
of different category learning systems. Craig and Lewandowsky
(2012); Lewandowsky (2011), and Lewandowsky, Yang, Newell,
and Kalish (2012) used a more comprehensive measure of WMC
(Lewandowsky, Oberauer, Yang, & Ecker, 2010), a larger set of
category learning tasks, and a repeated-measures methodology.
Lewandowsky (2011) trained every participant, over the course of
multiple sessions, on six different tasks. These tasks were versions
of the six types of categorical distinctions introduced by Shepard,
Hovland, and Jenkins (1961), requiring classification of eight
stimuli composed of three binary dimensions into two equal-sized
categories. While some of these types of categories are captured by
easily verbalizable rules, others essentially require that all eight
items be memorized. Craig and Lewandowsky (2012) had each of
their participants learn two categorization tasks where stimuli were
comprised of four binary dimensions. In one of their tasks (the 5–4

task from Medin & Schaffer, 1978) 9 of the 16 possible items are
used during training, and there is no simple classification rule. In
the other of their tasks (from Medin, Altom, Edelson, & Freko,
1982) 8 of the 16 items are used during training, and they can be
classified by applying an exclusive-or rule on two of the four
dimensions. Finally, Lewandowsky et al. (2012) trained every
participant on sets of six (Experiment 1) or four (Experiment 2)
condensation and filtering tasks that varied systematically in dif-
ficulty, and all of which involved large numbers of stimuli that
varied along two continuous dimensions. In all of these studies
people’s performance during learning was found to be consistent
with a homogeneous beneficial influence of WMC on category
learning regardless of the task details.

Despite this evidence to the contrary, multiple systems theorists
have maintained the view that category-learning tasks are differ-
entially sensitive to WMC, citing DeCaro et al. (2008) as an
example (e.g., Grimm & Maddox, 2013; Maddox & Chandrasek-
aran, 2014; Miles & Minda, 2011; Rolison, Evans, Dennis, &
Walsh, 2012). One possible reason for this might be that the
categories used in the studies mentioned above all differ in appar-
ently minor but potentially important ways from the kind of
categories often associated with the procedural learning system.

All existing experiments that demonstrate a homogeneous in-
fluence of WMC across tasks have used categorical distinctions
that are potentially error-free. Lewandowsky’s (2011) tasks used
only eight stimuli, while Craig and Lewandowsky’s (2012) exper-
iments used eight or nine items. With a small number of stimuli,
absolute identification might bypass either a rule-based or implicit
system, meaning that homogeneous working memory effects in
such tasks may not be due to category learning at all. However,
Lewandowsky et al.’s (2012) tasks used a large number of stimuli,
preventing memorization. Nonetheless, all of their categories were
perfectly linearly separable. With perfect separability, participants
might have been encouraged to persist in searching for a classifi-
cation rule past the point at which they would normally shift to an
implicit strategy. Thus, the homogeneous effect of working mem-
ory might be due to a continuous reliance on a rule-based learning
system, as COVIS would claim. To avoid these potential con-
founds, we chose to adopt two existing pairs of filtering/conden-
sation tasks from within the COVIS tradition (Maddox, Ashby, &
Bohil, 2003; Zeithamova & Maddox, 2006), which are taken to
rely differentially on the rule-based and procedural systems. In all
four of these tasks memorization is essentially impossible and
there is no deterministic response strategy that will produce 100%
correct responses.

While these tasks are chosen from the existing literature as
diagnostic of multiple-systems, their utility depends on the rela-
tionship between the categorization strategy people learn to use,
which is presumed to differ between filtering versus condensation
tasks, and how well people do, which is measured in the proportion
of correct responses. This relationship is, however, far from clear;
people may try to use the correct strategy but do so poorly, or they
may use a suboptimal strategy but do so very well (as in DeCaro
et al., 2009). For this reason, it is often necessary to find another
measure of categorization strategy, in the form of explicit models
that predict the probability with which a participant will classify
each item (given its features) as a member of each category. These
models are a proxy for cognitive computational modeling, but they
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have the advantages of being more tractable and less theoretically
contentious.

Model comparison is, however, a very difficult exercise even
when the models are simple statistical descriptions of behavior.
Researchers choose category structures for use in an experiment in
the hope that they will be particularly diagnostic of the partici-
pants’ response strategies. When selecting designs using large
numbers of stimuli, Lewandowsky et al. (2012) chose not to use
the structures we use here precisely because these are particularly
challenging in this regard; different response models make quite
similar predictions for these structures. Moreover, when the mod-
els in question are not strictly nested, it is difficult to compare them
using penalized maximum likelihood as there is no guarantee that
the parameters that distinguish the models all provide equal flex-
ibility. Thus, the use of different penalized likelihood measures
(such as the Akaike information criterion [AIC] or the Bayesian
information criterion [BIC]) may be misleading.

To address these difficulties, we take a number of steps to
clarify the influence of working memory capacity on learning. To
begin, we measure WMC with the four-part battery of Le-
wandowsky et al. (2010). Then, we use a two-part approach to our
analysis of WMC and learning in condensation and filtering tasks.
The first part consists of two analyses of WMC and categorization
performance per se: a state-trace analysis (Bamber, 1979) that
directly aims to detect a differential influence of WMC on con-
densation and filtering performance over the course of study, and
a Bayesian correlational analysis of WMC and performance.

State-trace analysis (STA) is a general method for determining
whether one or more independent latent variables must be postu-
lated to account for the effects of two or more independent vari-
ables on two or more outcomes. In the current context, these
variables are the time course of learning (early vs. late trials) and,
if dual system accounts are correct, the WMC of participants. The
two outcomes are performance in the condensation and filtering
tasks. STA makes minimal assumptions about the relationship
among the independent, latent, and dependent variables and its
logic supersedes the dissociation logic sometimes used to charac-
terize that relationship (Dunn, Kalish, & Newell, 2014). However,
STA does require that the independent variables be discrete, as it
treats them only as nominal measures. Thus, while STA makes
fewer assumptions about the distribution of accuracy and WMC
scores than does the correlational analysis, it does require discret-
ization of the WMC scores. These two techniques may thus be
viewed as complementing each other; differences in the direction
of correlation between WMC and accuracy across the two depen-
dent variables would be evidence of a differential influence of
WMC on the two tasks, as would a significant deviation from
monotonicity (see the Results section, below) in the state trace.

The second part of our analysis pursues a Bayesian model-
comparison approach. This allows us to quantify the amount of
evidence in favor of particular response models throughout the
experiment. Generally, we wish to know whether people with
higher WMC have a greater tendency to use rule-like strategies
early in training, and if they tend to persist in using such strategies
longer than do people with lower WMC. This question is difficult
to answer because we must infer strategy use from the goodness of
fit of particular models. Thus, the question we can actually answer
is whether or not WMC is associated with a higher posterior
probability of one or another response model. Our direct estima-

tion approach represents a further advance from the approximate
inference approach developed by Donkin, Newell, Kalish, Dunn,
and Nosofsky (2015), which in turn is an advance of the practice
from merely reporting the best-fitting model or the maximum-
likelihood model parameters.

To summarize, in this study we are looking for any differential
influence of WMC on category learning across two tasks: conden-
sation and filtering. We use two different pairs of category learning
tasks each of which is taken to be diagnostic by multiple-systems
researchers: Maddox et al. (2003) for the pair used in Experiment
1, and Zeithamova and Maddox (2006), for the pair used in
Experiment 2. If there is the kind of differential influence of WMC
on learning these tasks that dual-system theorists propose then we
should see correlations between WMC and performance with
different signs. If the differential influence is more modest, we
should still see a significant departure from a monotonic state
trace. Finally, even if differential influence is such that it does not
produce a difference in accuracy we should still see that posterior
model probabilities are related to WMC. Because the two task
pairs differ only with respect to the coordinates used to generate
the filtering and condensation categories, differences between
them are not of theoretical interest. Therefore, we report both pairs
of tasks (which were conducted as successive experiments) to-
gether as a single study.

Method

Participants

One hundred and sixty undergraduate students from the Univer-
sity of New South Wales participated in return for course credit
(MAGE � 19.9, SD � 3.07; 64% female). Eighty participants
completed the Experiment 1 pair of the condensation/filtering
tasks, while a different 80 participants completed the Experiment
2 pair of tasks.

Procedure

Category learning task. Participants completed each cate-
gory learning task at individual computers on which stimuli were
presented one at a time, in a different random order for each
participant. Participants were instructed to place each stimulus into
either Category A or Category B by clicking on an appropriate
on-screen button with a mouse. Feedback was immediately pro-
vided on screen by the word correct or incorrect which remained
below the stimulus for 750 ms. Participants completed three blocks
of 80 trials for each task in which the 40 A and B stimuli were
shown once each. Participants were allowed self-timed breaks
between each block. Each participant completed one condensation
and one filtering task. There was a break between the categoriza-
tion tasks in which they were told that the new task would involve
a new category structure. The order of filtering and condensation
tasks was counterbalanced.

The categorization stimuli were Gabor patches, 200 � 200
pixels in size, with varying spatial frequency and spatial orienta-
tion generated by sampling randomly from the bivariate normal
distributions shown in Table 1. The coordinates used to generate
the Experiments 1 and 2 condensation and filtering stimuli were
taken from the relevant conditions of Maddox et al. (2003, Exper-
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iment 2) and Zeithamova and Maddox (2006, Experiment 1),
respectively. In Experiment 1 the condensation task had a higher
discriminability, d= (which refers to the average distance from
stimuli to the category boundary; see Table 1) than did the filtering
task and performance on condensation was better than on filtering
(see the Results section). In Experiment 2 the distributions had
more nearly equivalent d= values (see Table 1) and also equivalent
levels of accuracy on the two tasks (see the Results section). Both
condensation designs allow approximately 70% long-term accu-
racy with an optimal one-dimensional rule, but approximately 90%
accuracy with an optimal two-dimensional boundary. The stimuli
were produced using MATLAB (Mathworks, Natick, MA) rou-
tines from the Psychophysics Toolbox (Brainard, 1997), and were
presented centered on the computer screen.

Working Memory Test Battery. Participants individually
completed four computerized working memory tests: an operation
span (OS), a sentence span (SS), a memory updating (MU), and a
short-term spatial memory test (SSTM) (for details, see Le-
wandowsky et al., 2010). All tests were programmed and delivered
via MATLAB. The order of the four working memory (WM) tests
was fixed (MU-OS-SS-SSTM) but the order of completing the two
category learning tasks and the WM battery was counterbalanced
across three experimental sessions, each of which lasted approxi-
mately 1 hr.

Results

Working Memory Tasks

Summary statistics for the four WM tasks are displayed in
Table 2. These values are comparable across the experiments and
with previous studies using these tests (cf. Lewandowsky et al.,

2010). Lewandowsky et al. reported that this test battery has very
high validity, both internal and external. Our participants’ perfor-
mances share similar central tendencies, ranges and variances with
Lewandowsky et al.’s, leading us to believe that the psychometric
properties described in the development of these measures extend
to our observations. There was no credible difference in the dis-
tributions of the subscales between Experiments.

In line with the development of these measures, and consistent
with the subscale correlations shown in Table 2, we assume that
they represent aspects of a single underlying factor that we identify
as WMC. We used confirmatory factor analysis to find the load-
ings of the working memory scores on this factor, with the results
shown in Table 2. The factor accounts for approximately 61% of
the variance in the scores. Each participant was assigned a “true”
WMC score using these loadings.

Accuracy

Accuracy on each of the three blocks for each of the two tasks
for each of the two experiments is presented in Figure 1. In
Experiment 1, where the d= of the filtering task is low, it is more
difficult than the condensation task. In Experiment 2 the two tasks
are of more equivalent difficulty. We used two different analytic
techniques to look for associations between WMC scores and
category learning accuracy: (1) an investigation of differences in
linear correlations between WMC and accuracy by task and (2) a
general search for differential influence of WMC using state-trace
analysis.

Correlation Analysis

As an initial analysis, we computed the correlations between each
WMC measure and percentage correct accuracy for each of the three

Table 2
Descriptive Statistics of the Four Working Memory Tests in
Experiments 1 and 2 (N � 80), With the Overall Subscale
Correlations and the First Principal Component

Measure MU OS SS SSTM

Experiment 1

Mean .58 .71 .64 .86
Standard deviation .19 .15 .20 .06
Minimum .20 .27 .23 .69
Maximum .97 .99 .95 .98
Skewness �.68 .78 �.88 .20
Kurtosis .22 �.86 �.48 �.61

Experiment 2

Mean .55 .62 .62 .86
Standard deviation .19 .22 .21 .07
Minimum .15 .08 .06 .53
Maximum 1.00 .97 .98 .99
Skewness �.64 .00 �.19 4.89
Kurtosis .09 �1.01 �.55 �1.64
Standardized loadings .70 .65 .55 .53
Correlations

MU .463 .326 .415
OS .391 .234
SS .332

Note. MU � memory updating; OS � operation span; SS � sentence
span; SSTM � spatial short-term memory.

Table 1
Category Distribution Parameters for the Filtering and
Condensation Category Structures Used in Experiments 1 and 2

Category
structure �frequency �orientation �frequency

2 �orientation
2 Covfreq-orien

Experiment 1
Filtering

Category A 285 125 75 9,000 0
Category B 315 125 75 9,000 0

Condensation
Category A 272 153 4,538 4,538 4,463
Category B 327 97 4,538 4,538 4,463

Experiment 2
Filtering

Category A 280 125 75 9,000 0
Category B 320 125 75 9,000 0

Condensation
Category A 268 157 4,538 4,538 4,351
Category B 332 93 4,538 4,538 4,351

Note. The 80 stimuli for the condensation categories were obtained by
rotating the filtering stimuli clockwise by 45° around the center of the
spatial-frequency/spatial-orientation space and then shifting the spatial
frequency and spatial orientation to achieve an appropriate level of dis-
criminability (d=). In Experiment 1 the approximate d= was 9 for the
condensation task and 3.5 for the filtering task. In Experiment 2 the
approximate d=was 6.7 for the condensation task and 4.3 for the filtering
task. (Higher levels of d= indicate more discriminable stimuli.)
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blocks of trials and for condensation and filtering separately, combin-
ing both experiments. We used a Bayesian estimation approach to
compute the posterior distribution of each of these six correlations
independently.1 The results are shown in Table 3. For all three blocks
of the filtering task the credible regions included zero. For all three
blocks of the condensation task the credible regions were entirely
greater than zero. However, the high-density intervals are quite broad,
indicating that the precision of the estimate is rather low. Only for the
final block of the condensation condition does the 95% high-density
interval entirely exclude a reasonable region of practical equivalence
of (�.10, .10).2 However, despite the low precision of the estimates,
it is clear that there is no reliable negative correlation at any stage for

the condensation task. Thus, the correlation analysis suggests a mod-
est positive relationship between WMC and average performance
overall (the median posterior r � .16), which is substantially larger for
the later blocks of the condensation condition but which is too small
to be considered evidence for a relationship in the filtering condition.

State-Trace Analysis

The hypothesis under investigation is that WMC is positively
related to performance on the filtering task but negatively related to
performance on the condensation task, at least initially. The previous
correlation analysis depends on an assumption of linearity in the
relationship between the latent mastery of the category structures and

1 We used the code provided by Bååth (2014), which specifies a model
as follows. The data (percentage correct, working memory capacity) are
taken to be distributed as a bivariate normal. The prior on the means are
normal, with a mean of the sample mean and broad variance. The prior on
the covariance matrix is broken into on-diagonal and off-diagonal ele-
ments. The priors for off-diagonal elements are broach uniform distribu-
tions ranging from 1/1,000 to 1,000 times the observed variance. The priors
on the parameter of interest, the on-diagonal correlation coefficient, is
uniform over (�1,1). All chains were well mixed and were nonautocorre-
lated.

2 We also performed a Bayes factor analysis using JASP (JASP Team,
2016), which approximates the posterior analytically. Only Blocks 2 and 3
of the condensation condition provided evidence against the null of no
correlation (BF10 � 10). However, it is also the case that no block of data
provided evidence in favor of a negative correlation; the highest BF10 was
for Block 1 of the filtering condition, which was only 0.40.

Figure 1. Accuracy of categorization for each of the three blocks of the two experiment’s versions of the
condensation and filtering tasks. Violin plots show the mean densities (white crosses) and smoothed kernel
densities (black regions). See the online article for the color version of this figure.

Table 3
Estimated Correlations Between Working Memory Capacity and
Categorization Accuracy at Each Block of Training, Combined
Across Experiments (N � 160)

Condition Block

Median of
posterior

correlation
Lower bound

of HDI
Upper bound

of HDI

Filtering 1 �.099 �.258 .054
2 .020 �.146 .167
3 .095 �.062 .249

Condensation 1 .212 .057 .363
2 .239 .088 .387
3 .254 .106 .401

Note. HDI � high-density interval.
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the observed performance on the categorization tasks. A stronger test
of the hypothesis that WMC differentially affects filtering and con-
densation is provided by state-trace analysis (STA), as it does not
depend on this strong linearity assumption (Dunn, Newell, & Kalish,
2012; Dunn, Kalish, & Newell, 2014). In order to perform STA, all
independent variables need to be discrete. We therefore quantized
WMC by placing participants into four quartiles of 40 participants
each. Performance of these groups on the two tasks is shown in the
state-trace plots in Figure 2.

The signature of the differential influence of WMC on learning
filtering categories is for the data in Figure 1 to not lie on a single
monotonic curve (Dunn et al., 2014). We found the best-fitting
monotonic curve through the data in Figure 1 using the coupled
monotonic regression method developed by Kalish, Dunn, Burdakov,
and Sysoev (2016). Because Bayesian estimation methods have not
yet been developed for this design, we used Kalish, et al.’s parametric
resampling bootstrap procedure to provide an empirical p value to
evaluate the null hypothesis that monotonic curve is an adequate
description of the data. The observed value for the one-dimensional
state-trace was p � 0.29, indicating that we cannot reject the null
hypothesis of a uniform influence of WMC on the two tasks.3 Any
discretization of a continuous variable has the potential to produce

misleading results. We chose four levels rather than a median split
(two levels) to ensure that at least some of the resulting quantiles are
genuinely different, and 4 levels rather than, for example, 10 levels to
ensure that there were enough measurements within each level to
allow good estimation of the dependent variables. However, as a
check we computed a p value for quantizations ranging from 2 to 10
groups. In each case the result was nonsignificant.

Despite these results, one might still argue that the nature of the
involvement of WMC in learning, and its differential influence on
the condensation and filtering tasks, remains somewhat ambigu-
ous. COVIS posits that the main role of WMC in learning is to bias
participants toward using a rule-based strategy, regardless of the
task at hand. That is, people with higher WMC should be inclined
to persist in using a rule-based strategy, while people with lower
WMC should not—they should either abandon the rule-based
strategy in the condensation task or never attempt it in the first

3 We also considered the standard analysis of variance approach to
dissociations with these data, which found only a marginal interaction
among WMC, task, and block. This interaction is not diagnostic of whether
there was, or was not, differential influence, however.
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Figure 2. State-trace plots of the performance on the condensation and filtering tasks of participants divided
into quartiles by working memory capacity (WMC). (A) Results from all participants. The data are shown for
the first (lowest, Quartile 1) through fourth (highest, Quartile 4) quartiles of WMC. Error bars are the
sample standard errors of the mean. The best fitting one-dimensional state trace, found by coupled
monotonic regression, is shown as the solid line. Statistical analysis reveals the deviation from this
regression to be nonsignificant.
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place. Categorization accuracy is not uniquely related to categori-
zation strategy. People with higher WMC might perform just as
well by using their rule-based strategy (recall that both condensa-
tion designs allow approximately 70% long-term accuracy with an
optimal one-dimensional rule) as people with low WMC might by
using a similarity-based strategy (where errors might be frequent
early in learning). We therefore turn to a formal analysis of
response strategies per se, rather than accuracy, to resolve the role
of WMC in these tasks.

Response Strategy Analysis

In this analysis, we fit sets of response-surface models to the data
from each participant so as to identify their categorization strategy.
The models are described formally in the Appendix and depicted in
Figure A1; here we describe them informally. A response surface
model is one which simply predicts the probability a participant will
apply label A to any given stimulus, based solely on its values of
orientation and spatial frequency. We chose as our least restricted
model one that assumes that both A and B items are normally distrib-
uted with equal variance, with the means of these category distribu-
tions able to vary in location on both the spatial frequency and
orientation dimensions. This model, which is a naïve Bayes classifier,
effectively places a linear boundary of arbitrary orientation at an
arbitrary location in the two- dimensional space, with a gradient, or
gain, determined by its variance parameter. Because distribution lo-
cations may vary in two dimensions, we call this a two-dimensional
(2D) model. It is a moderately complex model, having three free
parameters (two for location, one for variance), and was fit to each
block of the experiment separately.

We considered two kinds of models with fewer than three param-
eters. The first is our null model, in which the participant is held to
simply guess A at a constant, freely estimated, rate. The second
consists of naïve Bayes classifiers that only use one of the two
stimulus features, which we call 1D models. In the filtering condi-
tions, where only spatial frequency matters, the one-dimensional (or
1D) spatial frequency classifier would be expected to describe an ideal
observer. We fit both possible one-dimensional models, which have
two parameters each, to each block of data. Each of these models
effectively places a decision boundary at some value of either spatial
frequency or orientation, with a gradient determined by the common
variance of the A and B distributions.

Finally, we considered two additional models that had three free
parameters, but which are more constrained than the first model.
Response surfaces with multiple boundaries, each aligned with a
stimulus dimension, have been considered as plausible rules in cate-
gorization, so we generated two such bilinear models. Basically, each
model uses two one-dimensional naïve Bayes classifiers and then
applies either a conjunctive or a disjunctive decision rule to their
output. Essentially, each model carves the space into (not necessarily
equal area) quadrants; one model identifies three of these quadrants as
A and one model identifies three of these quadrants as B. These 2D
models, like the unrestricted classifier, use all the information in the
stimulus, unlike the two 1D models.

Overall, then, there are six models to be compared. Three 2D
models depend on both stimulus features: the unconstrained linear
two-dimensional classifier and the two constrained bilinear classifiers.
Two 1D models depend on only one stimulus feature: These are the

one-dimensional linear classifiers. Lastly, there is the random guess-
ing model that can fit otherwise unclassifiable blocks of responses.

We pursued a Bayesian estimation approach to model comparison
(Kruschke, 2014). This approach avoids having to apply an arbitrary
correction for the number of parameters in each model, as frequentist
likelihood-based approaches must do.4 The details of our procedure
are provided in the Appendix, but essentially it produces a direct
estimate of the posterior probability of each model given the data.
Figure 3 shows the posterior probability of each of the six models,
represented in one of four shades of gray, for each participant in each
of the three blocks of both the filtering and condensation tasks. The
participants are arranged in increasing order of WMC in each graph to
allow visual comparison of the patterns of model fit over blocks and
conditions. Because our concern is with the posterior probabilities of
model classes, the two 1D models are both shaded dark gray, while
the conjunctive and disjunctive models are both shaded light gray.
The 2D linear model is white and the random responding model is
black.

The first thing to notice is that there are clear changes in the
distributions of posterior probability across blocks for both tasks. In
the first block of filtering training (upper row of panels), where the
“correct” model would be the 1D discrimination on spatial frequency,
the 2D models have most of the mass. This is largely due to these
models’ ability to capture more types of variability in the responses,
which are structured enough to reject the null, random-guessing,
model but too noisy to favor the restricted 1D model. As the exper-
iment continues, the participants gradually learn to give the correct
responses, and the posteriors converge on the spatial frequency 1D
model. Inspection of Figure 3 suggests that there is, however, no
relationship between the participants’ WMC and the model posteriors
either within or between blocks. We computed the correlation be-
tween WMC and model posterior within each block. The only mar-
ginally credible correlations were observed in the third block, with a
small positive relationship between WMC and the posteriors of the
2D linear and the posteriors of the 2D conjunctive model (r � .234
and r � .232, respectively).5

The condensation task (lower row of panels, Figure 3) shows
similar results, but with the direction of change reversed. Early in the
experiment participants are generally consistently labeling the items
by either their spatial frequency or orientation. By the end of the
experiment, however, participants were more likely to produce re-
sponses consistent with one of the 2D models. The conjunctive
classifier and the bivariate linear classifier appear to fare about equally
well, which is not surprising given that the structure of these catego-
ries does little to discriminate these two classification schemes (a
point raised in the design of Lewandowsky et al.’s, 2012, experi-
ments). Even more than with the filtering task, there is a lack of any
consistent change in response model posterior distributions across the

4 We also pursued a maximum likelihood approach, comparing these
models using both AIC and BIC. The relative goodness of fit of the various
models did indeed depend on which penalty was imposed, but not in any
obviously systematic way.

5 We also correlated WMC with the interblock differences in posterior
probability for each model (e.g., the posterior of the 1D models in Block
1 vs. Block 2 of the condensation condition), and with the intercondition
differences (e.g., the posterior of the 2D linear model in Block 1 of the
filtering vs. Block 1 of the condensation condition) and found no credible
relationships.
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ordinate (the largest |r| was less than 0.16), reflecting a lack of any
differential bias or selective influence of WMC on strategy choice.

Discussion

Working memory is conceptualized as a fundamental cognitive
resource, and categorization is a fundamental cognitive capacity. It
would not be surprising if working memory capacity was posi-
tively related to a person’s ability to learn to remember new
categorical distinctions. Categorization, however, is a complex
capacity. There are likely many cognitive mechanisms involved in
supporting it, and many strategies at play in the way it is exercised.
It would not be surprising if working memory capacity was related
to category learning only relatively weakly, or more strongly in
some situations than others. What would be surprising, from a
pretheoretical perspective, would be if having a larger working
memory capacity actually resulted in worse performance on a
category learning task. This, of course, is exactly the claim made
by COVIS (Ashby et al., 2011) when the task in question is one
which requires a person to surrender explicit control of their
learning and allow it to happen implicitly.

According to the logic of COVIS, one data pattern that would
support this view of two independent learning systems is as follows:
(1) significant positive correlations between accuracy and WMC on
the filtering task; and (2) significant negative correlations between
accuracy and WMC on the condensation task, especially early in
training. Table 3 shows that this pattern was not found. We found that
the only credible correlations were for the condensation task, where
higher WMC was clearly associated with better performance.

The differential dependence of category learning systems on WMC
makes two additional parameter-free predictions. The first is that
performance on condensation and filtering tasks should produce a
two-dimensional state trace when high- versus low-WMC participants
are tested across blocks. As Figure 2 shows, however, the data are

consistent with a one-dimensional state trace. Our frequentist test
cannot support the null here, but the observed state trace is not
significantly two dimensional. Second, the strategy a participant
chooses to use, and thus the response surface model that best de-
scribes their data, should differ with WMC. Our analysis, summarized
in Figure 3, is designed to reveal any such bias as a systematic change
in the model posterior distributions across the ordinate. No such trend
is in evidence demonstrating that there is no systematic preference for
1D models or the 2D conjunctive model by high-WMC participants at
any stage of learning the condensation task.

The exchange regarding the involvement of WMC in category
learning (DeCaro et al., 2008, 2009; Tharp & Pickering, 2009) strikes
at the heart of the multiple- versus single-system debate. Our two
experiments find no support for a system that operates independently
of working memory in the domain of perceptual category learning.
Speaking generally, it appears that working memory tends to aid
performance across category structures in general.

Interestingly, this facilitative effect was observed in the putatively
“implicit” condensation task and not in the “explicit” filtering task.
This might be because variability in filtering performance is related
more to perceptual factors than to memorial ones (e.g., the ability to
tell what value a stimulus has on a given dimension, rather than to
remember what value the criterion is). However, such a result would
also be predicted if one assumes that participants approach both
condensation and filtering tasks in the same manner, that is, by
trying—explicitly—to find the (perhaps quite complex) boundary or
representation that delivers accurate categorization. When the bound-
ary is not easily verbalizable, as in the condensation task, one might
expect that trying to find and maintain the correct response strategy
requires working memory resources and thus leads to a benefit for
those with higher WMC. This is what we found, with WMC associ-
ated with better performance in later stages of condensation learning
but not associated with any difference in the probability of using a

Figure 3. The posterior probabilities of each of the response models given the data, p(Mi|D), for each model
i, for each participant at each of the three blocks in each of the two conditions. The top row is the filtering task,
and the bottom row is the condensation task. Participants are ordered by their working memory capacity working
memory capacity composite scores. The two one-dimensional (1D) models are colored the same, as are the two
two-dimensional (2D) bilinear models (see the text), to allow easier interpretation of the figure.
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complex response strategy. Thus, the kind of strategy people use
during learning the condensation task does not differ with WMC, but
their command of that strategy does, meaning that they perform better
but are not classified differently. In the filtering task, by contrast, there
is no overall benefit of high WMC in terms of performance. This may
be because the primary difficulty in the filtering task may be unrelated
to WMC, lying instead in the problem of accurately estimating the
spatial frequency of the to-be-classified stimulus. The fact that per-
formance is not unambiguously identified with the 1D classifier may
be due to the difficulty of this decision, or to a general dissatisfaction
with this difficult strategy leading to continued exploration of other
strategies.

Single Versus Dual Systems

Just because our data are not consistent with the predictions of
a particular multiple systems view does not, of course, mean that
they are necessarily consistent with any particular single-systems
theory. Single-system theories typically do not offer the sort of
structural predictions that a theory like COVIS makes. We suggest
that two lines of analysis would be required to shed more light on
the role of WMC in condensation and filtering tasks. The first is
the identification of cases when it is possible to observe the
differential influence of any relevant factor (such as WMC) on any
relevant outcome (such as accuracy in category-learning tasks).
STA tests just this kind of generic distinction, and showed, in the
current case, that there was an absence of evidence for multiple
latent process governing learning of condensation and filtering
tasks. The value of pursuing this approach across a range of tasks
and conditions would be to develop a theory-neutral catalog of
data that characterize how category learning is articulated. In
essence, this would suggest where the “joints” were in the “body”
of this capacity, allowing its successful dissection. The second line
of analysis would be to develop a structural model of our tasks
using a quantitative single-system model such as the Generalized
Context Model (Nosofsky, 1986) or attention learning covering
map model (Kruschke, 1993). While we suspect that this should be
feasible, we have not pursued theory-based modeling here because
we believe that the effort should be made in the context of a survey
of the larger body of results that characterize category learning.

Our measure of WMC was derived from four component scores,
but we analyzed the effects of WMC as a unitary construct. We did
this, in part, to avoid a “garden of forking paths” problem (Gelman
& Loken, 2016). In part, however, we did so because the claim
under investigation is whether an “implicit” or “procedural” sys-
tem makes an independent contribution to category learning. How-
ever, the development of a structural model might require closer
investigation of these components. An exploratory analysis of the
association of category learning performance across both category
learning tasks with the SSTM component of WMC found that
correlations were credibly positive on all blocks of both tasks with
the exception of the first block of the filtering task. The SSTM task
requires participants to remember and to reproduce the location of
2–6 dots in a 10 � 10 grid. It is plausible that good memory for
such spatial coordinates is likely to be useful when trying to learn
about categories defined by the width and orientation of sine-wave
gratings. None of the other components were individually credibly
associated with performance across blocks and conditions.

It is of interest in this context that at least one set of results
interpreted as supporting the multiple-systems view (Miles &
Minda, 2011) also show that learning a condensation structure is
disrupted by a concurrent visual working memory task. The cross-
task role of visual working memory in learning has also been
accepted in recent interpretations of the COVIS model (Valentin,
Maddox, & Ashby, 2014). Thus, while our results are not consis-
tent with a view that there exists an implicit or procedural learning
system operating independently, they are consistent with recent
findings from other category learning studies. This leads naturally
to the question of whether the involvement of visual “working
memory,” which is necessarily explicit, in category learning can
reasonably be conceptualized as a property of a procedural system
that is, by definition, implicit. The methodology we have used in
the current study could, of course, be applied to address questions
about the influence of visual working memory if such questions
were considered to be theoretically relevant.

Our study used two sets of category structures taken from the
existing literature. However, we found that these particular structures
are only weakly diagnostic of any differences in strategy use. The
Bayesian model posteriors were generally ambivalent between 1D
and at least one of the 2D models, which made it impossible to rule
out either of these classes of strategy for the vast majority of partic-
ipants. This nondiagnosticity echoes the concerns that led Le-
wandowsky et al. (2012) to adopt novel category structures for their
investigation. Nevertheless, our evaluation of model posterior proba-
bilities represents an advance in analyzing multiple overlapping strat-
egies in category learning experiments. Our modeling results appear
to demonstrate the absence of any effect of WMC on categorization
strategy early in learning, while possibly suggesting some subtle
differences late in learning. Critically, the results provide a full picture
of the uncertainty inherent in identifying just how participants are
learning the categorization tasks. We suggest that future research into
the number and nature of latent factors governing category learning
will need to carefully consider their designs, and that historical con-
cerns should not dominate theoretical ones. Methods that attempt to
identify learners’ strategies or “systems” via maximum likelihood
estimates of the fit of response surface models are prone to overstating
the evidence such estimates provide. Donkin et al. (2015) have made
a similar point in the context of demonstrating the difficulties inherent
in classifying participants’ response strategies in a standard four-
category design.

Many other variables “dissociate” performance on condensation
and filtering tasks, leading some to argue that there is overwhelm-
ing support for multiple-systems views (e.g., Ashby et al., 2011;
Valentin et al., 2014). However, our results and other recent
findings (Craig & Lewandowsky, 2012; Lewandowsky, 2011;
Lewandowsky et al., 2012) suggest that such views should be
modified in light of the fact that when WMC contributes to
learning it does so positively to learning both condensation and
filtering category structures. An understanding of the psycholog-
ical mechanisms responsible for this positive influence remains
elusive. Neither dissociation logic nor STA can count the number
of systems involved, but only the minimum number of latent
variables, as pointed out by Dunn et al. (2014). Further research
will be needed to articulate just how people use their working
memory during category learning.
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Appendix

Response Strategy Models

The models used to describe performance are the same as those
developed by Lewandowsky et al. (2012) and described in their
Appendix. Here we briefly rehearse that description and further
explain the hierarchical Bayesian model used to estimate the
posterior distributions of the model probabilities and parameters.
Prior to modeling, the stimulus values were standardized to fall in
the interval (0, 1) on both dimensions.

There are six models of the choice probability p(A|x) all of
which hold that p(A|x) �1 � p(B|x). The five learning models
(exclusive of random guessing) hold that the likelihood p(x|A) is
given by a bivariate Gaussian distribution with a mean vector, �A,
and a standard deviation � that is the same for both stimulus
dimensions; these models are shown in the five panels of Figure
A1. For convenience, and without loss of generality, we set �A

equal to the null vector by subtracting the mean of the stimuli
given label A by the participant from the values of each stimulus;
in Figure A1 the circle representing Category A is located at (0, 0)
in every panel. The five learning models differed by using different
representations of p(x|B), as described below. The sixth model is a
biased random guessing model which holds that p(A) � �, where
� is a free parameter.

The general linear classifier defines the likelihood, p(x|B), as a
bivariate normal, N(�B, �I), and is shown in the leftmost panel of
Figure A1. The posterior distribution p(A|x) has an equiprobability
boundary that forms a straight line at a particular location and

orientation, both determined by �B, and with a gradient (i.e., the
rate of change of the choice probability) determined by the ratio of
� to the magnitude of �B. Because �B is free to vary on both
stimulus dimensions, we call this a two-dimensional model

When one of the components of �B is set to zero (as in the two
upper panels on the right side of Figure A1), the resulting distri-
bution has an equiprobability boundary that forms a straight line
parallel to the dimension corresponding to the non-zero compo-
nent. The location and gradient of the boundary are again deter-
mined by �B and �. We identify these as one-dimensional models,
because prediction depends on only one of the two stimulus
dimensions.

We used the same formalism to construct models consistent
with two-dimensional conjunctive or disjunctive rules. The
likelihood for the conjunctive model is formed by setting
p�x�B� � max�p�x�B1�,p�x�B2��, where p(x|B1) is given by a
multivariate Gaussian with mean (B1, 0) and standard deviation
�. Similarly, p(x|B2) is given by a distribution with mean (0,
B2). The likelihood for the disjunctive model is just p�x�B� �

min�p�x�B1�,p�x�B2��. The values of B1 and B2 determine the
locations of the equiprobability boundaries in these models, and
the gradient across the boundary is a function of �. These are
also 2D models, and are shown in the bottom two panels on the
right side of Figure A1.

(Appendix continues)
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We placed these models in a hierarchy by assuming that each
subject is a random multinomial draw from a Dirichlet distribution
over models, and that this distribution is different for each of the
three training blocks in each of the two tasks. The Dirichlet
distribution itself is drawn from a uniform prior over each of the
six model types. Each component of �B for each model is given a
uniform prior over (�1, 1), � is given a uniform prior over (0.1, 5),
and the guessing parameter � is given a uniform prior over (0, 1).

To estimate the posterior probability of each model for each
participant we used a transdimensional Markov-chain Monte Carlo
method (Kruschke, 2014). This method requires computation of
pseudo-priors, which were found by estimating the posteriors of

each model’s parameters for each participant in each block for
each task. With these pseudo-priors in hand, we used JAGS to
collect four chains of 10,000 samples each with a 1,000 sample
burn-in. Chains were well mixed and aggregated for use in esti-
mating the posteriors of all model parameters and hyperparam-
eters. The only parameters of interest are the model probabilities
for each block, which are reported in Figure 2.
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Figure A1. The five learning models used in the strategy analysis. The left column shows the two-dimensional
model. Categories are assumed to be equal-variance Gaussian distributions, with the mean of Category A set to
(0, 0), with the mean of B on both dimensions and the shared variance as three free parameters. The circles
represent the set of stimuli X with equal likelihood p(X|Category). The top row shows the two one-dimensional
models, each with the mean of B set to equal zero on one of the two dimensions. The bottom row shows the
bilinear full models, with locations of the B means shown as though they were distributions. Unshaded regions
are more likely to be classified as A.
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