Psychon Bull Rev (2015) 22:1193-1215
DOI 10.3758/s13423-015-0808-5

THEORETICAL REVIEW

A rational model of function learning

Christopher G. Lucas - Thomas L. Griffiths -
Joseph J. Williams - Michael L. Kalish

Received: 14 July 2014 / Revised: 17 January 2015 / Accepted: 26 January 2015 / Published online: 3 March 2015

© Psychonomic Society, Inc. 2015

Abstract Theories of how people learn relationships
between continuous variables have tended to focus on two
possibilities: one, that people are estimating explicit func-
tions, or two that they are performing associative learning
supported by similarity. We provide a rational analysis
of function learning, drawing on work on regression in
machine learning and statistics. Using the equivalence of
Bayesian linear regression and Gaussian processes, which
provide a probabilistic basis for similarity-based function
learning, we show that learning explicit rules and using sim-
ilarity can be seen as two views of one solution to this
problem. We use this insight to define a rational model of
human function learning that combines the strengths of both
approaches and accounts for a wide variety of experimental
results.
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A rational model of function learning

Every time we get into a rental car, we have to learn
how hard to press the gas pedal for a given amount of
acceleration. Solving this problem—which is an impor-
tant part of driving safely—requires learning a relationship
between two continuous variables. Over the past 50 years,
several studies of function learning have shed light on
how people come to understand continuous relationships
(Carroll 1963; Brehmer 1971; 1974; Koh and Meyer 1991,
Busemeyer et al. 1997; DeLosh et al. 1997; Kalish et al.
2004; McDaniel and Busemeyer 2005). It has become clear
that people can learn and recall a wide variety of relation-
ships, but demonstrate certain systematic biases that tell
us about the mental representations and implicit assump-
tions that humans employ when solving function learning
problems. For example, people tend to expect that rela-
tionships will be linear when extrapolating to novel exam-
ples (DeLosh et al. 1997), and find it more difficult to
learn relationships that change direction than those that do
not (Brehmer 1974; Byun 1995).

Several models have been developed to understand
the cognitive mechanisms behind function learning. These
models tend to fall into two different theoretical camps.
The first includes rule-based theories (e.g., Carroll, 1963,
Brehmer, 1974, Koh and Meyer, 1991), which suggest that
people learn an explicit function from a given family, such
as polynomials (Carroll 1963; McDaniel and Busemeyer
2005) or power-law functions (Koh and Meyer 1991). This
approach attributes rich representations to human learn-
ers, but has traditionally given limited treatment to how
such representations could be acquired. A second approach
includes similarity-based theories (e.g.,DeLosh et al., 1997,
Busemeyer et al., 1997), which focus on the idea that
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people learn by forming associations: if x is used to pre-
dict y, observations with similar x values should also have
similar y values. This approach can be straightforwardly
implemented in a connectionist architecture and thus gives
an account of the underlying learning mechanisms, but faces
challenges in explaining how people generalize so broadly
beyond their experience. Most recently, hybrids of these
two approaches have been proposed (e.g., Kalish et al.,
2004, McDaniel and Busemeyer, 2005), with an associa-
tive learning process that acts on explicitly represented
functions.

Almost all past research on computational models of
function learning has been oriented towards understanding
the psychological processes that underlie human perfor-
mance, or the steps by which people update and deploy
their mental representations of continuous relationships. In
this paper, we take a different approach, presenting a ratio-
nal analysis of function learning in the spirit of Anderson
(1990) and Marr and Vision. W.H. (1982), and Shepard
(1987). Specifically, we start with an abstract representa-
tion of the problem to be solved and a handful of additional
assumptions about the nature of continuous relationships,
and then explore optimal solutions to the problem in light of
these assumptions with the goal of shedding light on human
behavior. This rational analysis provides a way to under-
stand the relationship between the rule- and similarity-based
approaches that have dominated previous work and suggest
how they might be combined. Whereas hybrid models apply
similarity-based learning to explicit rules, we offer a single
foundation that supports both approaches, using a common
set of commitments about learning and representation.

To understand the abstract problem that a function learner
faces, we can turn to machine learning and statistics, where
prediction in continuous domains—a problem familiarly
known as regression—has been studied extensively. There
are a variety of solutions to regression problems, but we
focus on methods related to Bayesian linear regression (e.g.,
Bernardo and Smith, 1994), which allow us to make and test
explicit claims about learners’ expectations, using probabil-
ity distributions. Bayesian linear regression is also directly
related to a nonparametric approach known as Gaussian
process prediction (e.g., Williams, 1998), in which predic-
tions about the values of an output variable are based on
the similarity between values of an input variable. We use
this relationship to connect the two traditional approaches
to modeling function learning, as it shows that learning
rules that describe functions and specifying the similarity
between stimuli for use in associative learning are not mutu-
ally exclusive alternatives, but rather two views of the same
solution. We exploit this fact to define a rational model of
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human function learning that incorporates the strengths of
both approaches.

The plan of this paper is as follows. First, we review
several sets of empirical phenomena in function learn-
ing, both to provide background and to establish criteria
by which different theories of function learning can be
judged. We then review past models of function learning,
dividing them into rule-based, similarity-based, and hybrid
approaches. Next, we introduce a new perspective on func-
tion learning in which rules and similarity can be expressed
in a common framework, and describe a model that fol-
lows from this perspective. Finally, we evaluate different
variations on our model against one another and previous
models.

Phenomena in function learning

Past studies have taken diverse approaches to understanding
how people learn relationships between continuous vari-
ables, but we will focus on four kinds of empirical phenom-
ena that have been used in previous tests of function learning
models (e.g., McDaniel and Busemeyer, 2005), or explic-
itly measure what kinds of relationships people implicitly
believe to be more or less likely (Kalish et al. 2007), or
challenge many models of function learning (Kalish et al.
2004). Our decision to focus on the following phenom-
ena is also motivated by their being relatively comparable,
coming from similar experimental designs involving ran-
domly ordered, sequentially presented training stimuli, in
the absence of informative cover stories or contextual infor-
mation. In this section, we review these four kinds of
phenomena, which we will later use to evaluate our own
approach to explaining and understanding function learning.

Interpolation and learning difficulty

Some kinds of relationships are easier to learn than others.
For example, increasing linear relationships tend to be easier
to learn than decreasing linear relationships (Brehmer 1971;
1976). Similarly, linear relationships are typically easier
to learn than non-linear ones ((Brehmer 1974; Brehmer
et al. 1985; Byun 1995); see Koh and Meyer (1991)
for a possible counterexample). Among non-linear rela-
tionships, people have more difficulty learning those that
change direction (Brehmer 1974; Brehmer et al. 1985;
Byun 1995). Cyclic relationships are especially difficult—
but not impossible—to learn (Bott and Heit 2004; Byun
1995; Kalish 2013). These systematic differences sug-
gest that some relationships are subjectively simpler, more
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common, or more straightforwardly represented than oth-
ers, and the patterns given above dovetail with explicit
human judgments about the probabilities of different kinds
of relationships (Brehmer 1974).

If the difficulty of learning a relationship reflects its
mental representation, one can evaluate a model of func-
tion learning by comparing its average error rates to those
of humans across several kinds of relationships. More pre-
cisely, if one orders several relationships by the average
magnitude of errors that humans make when predicting y for
x values that fall between past examples, i.e., interpolating,
a good model should show the same ordering in its predic-
tion error. For humans, these errors are influenced by many
factors, such as the match or mismatch of cover stories to
the available data, the number of training points, and presen-
tation order (Byun 1995), but we will focus on properties of
the relationships themselves, which provide a simple basis
for evaluating different theories of function learning. For
instance, relationships in which y increases as a function
of x tend to be easier to learn than functions in which y
decreases as a function of x, which are in turn easier to
learn than non-monotonic functions. For a summary of some
qualitative properties of functions that contribute to differ-
ential learning difficulty for humans, see (Busemeyer et al.
1997). In our own evaluation, we will use data from several
studies that were gathered by (McDaniel and Busemeyer
2005) and are summarized in Table 1.

Extrapolation

Studies that measure interpolation errors allow relationships
to be ranked by how easy they are to learn, with impli-
cations for those relationships’ subjective probability and
consistency with humans’ mental representations. Unfortu-
nately, quite different models can show similar patterns of
errors (given a limited set of relationship types) which con-
strains the amount one can learn from this approach. This
and other limitations of interpolation-error studies have led
some researchers to focus on how people extrapolate, or
make judgments about points that are distant from those
seen before. This approach gives a greater share of influ-
ence to learners’ prior beliefs, and makes it possible to
uncover patterns that are not reflected in interpolation error
rates. To date, extrapolation-based studies of function learn-
ing are comparatively sparse, but have revealed several
biases in human learners. For example, people’s extrapola-
tion judgments follow linear patterns ((DeLosh et al. 1997),
but see Kalish et al. (2004)), and more specifically tend
toward functions with a positive slope and an intercept of
zero (Kwantes and Neal 2006). In one instance of this bias,

when people are trained using data from a quadratic func-
tion, their average predictions fall between the true function
and straight lines fitted to the closest training points.

Learning multiple relationships

The term “function learning” suggests that relationships
between continuous variables—or at least the representa-
tions that people form of them—are functions, in that for
a given value of the predictor x, there is a single valid
prediction, or at least a range of predictions with a single
most-likely value or mode. In reality, this is not always the
case. For example, dose responses for drugs might have two
or more patterns, depending on unobserved genetic factors
or patient histories, and some hybrid cars have different rela-
tionships between pressure on the accelerator and the car’s
real acceleration, depending on whether or not the combus-
tion engine is active. The world abounds with hidden medi-
ators that can change the relationship between observable
variables, and one might expect humans to be able to make
judgments that reflect the presence of multiple underlying
relationships. Consistent with this intuition, Lewandowsky,
(Kalish and Ngang 2002) found that fire fighters learn two
distinct relationships between wind speed, ground slope,
and the rate at which a fire spreads, depending on whether
the fire is labeled as a standard forest fire, or a “back burn”
fire set to mitigate damage from future fires. Lewandowsky
et al. refer to this phenomenon as “knowledge partitioning”,
based on the idea that participants’ knowledge of the rela-
tionship at hand is partitioned into distinct subsets based on
context.

More recently, Kalish, Lewandowsky and Krushke 2004
conducted three experiments showing that people make
judgments that demonstrate an implicit belief in the pres-
ence of multiple overlapping linear relationships, even when
no contextual information was present, and in circumstances
where the training data could be explained using a single
non-linear relationship (see Fig. 1 for examples).

Iterated learning is an experimental method that was first
developed for studying language evolution (Kirby 2001),
but it has more recently been applied to other phenomena,
including function learning. In an iterated learning exper-
iment, there are chains of learners where the first learner
in each chain receives data, makes some inference on the
basis of those data, and uses that inference to provide new
data to the next learner in the chain. The data produced by
each learner is the product of the data he or she receives
and his or her inductive biases or expectations about the
underlying relationship, item, or event. As the chain of
learners grows longer, the influence of the learners’ shared
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expectations eventually washes out the information carried
by the data provided to the first learner. After enough iter-
ations, the data carried forward in the chain reflect human
expectations about what relationships are likely, rather than
the data the first learner in the chain sees, providing useful
information about how people represent and reason about
the phenomena at hand (Kalish et al. 2007).

Iterated learning

Figure 2 shows the results of a set of iterated function learn-
ing experiments conducted by Kalish et al. 2007. There
were four conditions that differed in what data were given
to the first participants in the chains. The positive linear
(A) chains started with a linear relationship with a slope of
one and an intercept of zero, the negative linear (B) chains
started with a linear relationship with a slope of negative
one and an intercept of zero, the U-shaped (C) chains started
with data from a U-shaped relationship, and the random (D)
chains started with a disorganized collection of points with-
out any apparent underlying regularity. Kalish et al. (2007)
found that the judgments of later participants tended to con-
verge to a positive linear relationship with a slope of one
and an intercept of zero regardless of the initial data. While
these convergence results dovetail with past findings indi-
cating that positive linear relationships are easier to learn,
the intermediate states of the chains provide a more detailed
view of function learning. For example, learners tended to
preserve negative linear relationships, consistent with the
idea that people think these relationships are likely or plausi-
ble. Further, many learners were quick to infer the presence
of multiple overlapping relationships, as when some partici-
pants interpreted noisy data as evidence for a negative linear
relationship superimposed on a positive one.

Models of human function learning

The phenomena described in the previous section have
inspired several theories and models of function learning,
which can be organized into three classes: those based on
rules or explicit functions, those based on associative or
similarity-based learning, and hybrids that use explicit rep-
resentations and associative learning. In this section, we
review each class in turn, before discussing the extent to
which each is consistent with the empirical results described
above.

Representing functions with rules
Some of the earliest research into function learning postu-

lates that people learn continuous relationships using explic-
itly represented functions (Carroll 1963). Carroll proposed

that people assume a particular class of functions (such as
polynomials of degree k) and use the available observations
to estimate the parameters of those functions. The result-
ing representation allows people to generalize beyond the
observed values of the variables involved. Consistent with
the version of this hypothesis that Carroll advanced, people
learned linear and quadratic functions better than random
pairings of values for two variables, and extrapolated appro-
priately. Similar assumptions have guided subsequent work,
which has explored the ease with which people learn differ-
ent kinds of functions (e.g., Brehmer, 1974), and examined
how well human responses are described by different forms
of nonlinear regression (e.g., Koh and Meyer, 1991).

The advent of rule-based models precedes most of empir-
ical results we consider, so it may be unsurprising that
these models face some difficulty in explaining those
results. Rule-based models do not show the flexibility in
interpolation that human learners exhibit, and tend not to
predict the order-of-difficulty found in interpolation stud-
ies (McDaniel and Busemeyer 2005). Similarly, there is
evidence that rule-based models (such as Koh and Meyer
(1991)) make extrapolation predictions that diverge from
human judgments (DeLosh et al. 1997). Purely rule-based
models make no provision for multiple overlapping relation-
ships, and thus cannot account for knowledge partitioning
effects (Kalish et al. 2004). By extension, their ability to
explain (Kalish, Griffiths, and Lewandowsky’s 2007) iter-
ated learning results is limited: while rule-based models
might be able to explain long-run convergence to posi-
tive linear relationships, they do not anticipate participants’
multimodal judgments.

Similarity and associative learning

Associative learning models propose that people do not
learn relationships between continuous variables by explic-
itly learning rules, but instead forge associations between
observed events and generalize based on the similarity of
new variable values to old. The first model to implement
this approach was the Associative Learning Model (ALM;
DeLosh et al., 1997, Busemeyer et al., 1997), in which input
and output arrays are used to represent a range of values
for the variables between which the functional relationship
holds. Presentation of an input activates input nodes close to
that value, with activation falling off as a Gaussian function
of distance, implementing a theory of similarity in the input
space.

Learned weights determine the activation of the out-
put nodes, which is a linear function of the activation of
the input nodes. Weights are learned by gradient descent,
where the local relationship between weights and errors is
used to find new weights that reduce the squared error of
the model’s predictions. This process is repeated until the

@ Springer



1198

Psychon Bull Rev (2015) 22:1193-1215

Training Participant 1 Participant 2 Participant 3 Participant 4
of ]
= - t"; .:I?# 'ﬁf [y -W‘a
c / il are 2 Rt
] kA Ry .
£ # .
[ é - - o
Q R ot Ol osee
3 / o el G
0 P P /'". #¢
o~ - 2
. wle

€ 0i '4' \.C . . ..i ‘-‘“ ¢ ." ‘
] . * A o et
£ 4 4 A - v
s| / B &0 et AT
i / &~ (‘ i % y
0.2 ’ 4 .}J s ..‘:x‘r"s ! s,,
5 / Yol o o
E o .
= N . .
[ . o % . . o .o k4
g 7 2 N i g 2 e
w / o~ - :‘d ‘e ~ *

Fig. 1 Training data and four participants’ judgments for Experiments 1-3 in Kalish et al. (2004). Predictor variable values are plotted on the

x-axes, with predicted variable values plotted on the y-axes

error can no longer be reduced. In practice, this approach
performs well when interpolating between observed val-
ues, but poorly when extrapolating beyond those values, as
it does not capture humans’ ability to extrapolate in sys-
tematic, structured ways. As a consequence, Delosh et al.
introduced the EXAM model, which constructs a linear
approximation to the output of the ALM when selecting
responses.

Similarity-based models have seen mixed success in
explaining the range of empirical phenomena we describe
above. In studies of interpolation and learning difficulty,
similarity-based models show similar patterns of interpola-
tion errors to those of humans (McDaniel and Busemeyer
2005). In the context of extrapolation, ALM does not
address extrapolation but EXAM was developed with those
results in mind and effectively captures the human bias
toward linearity and predicts human extrapolations over a
variety of relationships (McDaniel and Busemeyer 2005),
but without accounting for the human capacity for non-
linear extrapolation (Bott and Heit 2004). Like rule-based
models, similarity-based models make unimodal predictions
for any given x, and thus fail to account for knowledge
partitioning results. This limitation also prevents EXAM
from capturing some of the intermediate patterns that people
produce in the iterated learning experiment.

Hybrid approaches

Several studies have explored methods for combining rule-
like representations of functions with associative learning.

@ Springer

One example of such an approach is the set of models
explored in McDaniel and Busemeyer (2005). These mod-
els used the same kind of input representation as ALM
and EXAM, with activation of a set of nodes similar to
the input value. However, the models also feature a set of
hidden units, where each hidden unit corresponds to a differ-
ent parameterization of a rule from a given class, including
polynomial, Fourier, and logistic functions. The values of
the hidden units—corresponding to the values of the rules
they instantiate—are combined linearly to obtain output
predictions, with the weight of each hidden node being
learned through gradient descent.

Another instance of a hybrid approach is the POLE
model (Kalish et al. 2004), in which hidden units represent
different linear functions and the weights from inputs to
hidden nodes indicate which linear function should be used
to make predictions for particular input values. Using this
representation, the model can learn non-linear functions by
identifying a series of local linear approximations, and can
even model situations in which people seem to learn differ-
ent functions in different parts of the input space. As a result,
it is unique among the models we have discussed in its abil-
ity to match the bimodal response distributions discovered
by Kalish et al. (2004).

Hybrid rule- and similarity-based models form a more
heterogenous group than similarity- and ruled-based mod-
els, with representatives including POLE (Kalish et al.
2004) and McDaniel and Busemeyer’s (2005) connection-
ist implementations of rule-based models. POLE is set apart
from the other models we have discussed by its ability to
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Fig. 2 Plots of results from Kalish et al. (2007). A Positive linear initial data; B Negative linear initial

initial data

capture knowledge partitioning effects and it demonstrates
a similar ordering of error rates to those of human learn-
ers (McDaniel et al. 2009). In its extrapolation predictions,
however, there is evidence that it deviates from human per-
formance (McDaniel et al. 2009). In an iterated learning
design, POLE showed both convergence to positive linear
relationships and some of the qualitative patterns that human
learners demonstrate (depicted in Fig. 3II), including tran-
sitional states with overlapping positive and negative linear
relationships. McDaniel and Busemeyer’s hybrid polyno-
mial model—which performed better than the alternative
hybrid models they considered—demonstrates an ordering
of interpolation errors on different functions that aligns
only roughly with human judgments (see Table 1), but its
extrapolation predictions are consistent with human judg-
ments from McDaniel and Busemeyer’s studies (McDaniel
and Busemeyer 2005). Like rule-based models, this model
offers unimodal predictions, and thus cannot account for
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knowledge partitioning phenomena, and has not been eval-
uated against iterated learning results.

Summary

We have reviewed a diverse set of models that accurately
predict a variety of empirical phenomena in function learn-
ing. Despite their different commitments about how humans
learn continuous relationships, a common theme of these
models is an emphasis on the process by which function
learning occurs. In the next section, we will take a funda-
mentally different view, focusing on the abstract problem
of function learning and the forms that good solutions to
that problem should take, rather than the process. This view
complements past models rather than supplanting them, and
we will demonstrate that it provides a common framework
with which to understand and unify rule- and similarity-
based approaches.

@ Springer
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Rational solutions to regression problems

The models outlined in the previous section all aim to
describe the psychological processes involved in human
function learning. In this section, we consider the abstract
computational problem underlying this task, using optimal
solutions to this problem to shed light on both previous
models and human learning. Viewed abstractly, the com-
putational problem behind function learning is to use a set
of real-valued observations x, = (xi,...,Xx;) and t, =
(t1, ..., ), to predict what y, 1 goes with a new x,, 1. Here,
the y-values correspond to the underlying relationship, and
the z-values are observations of y that have been obscured
by additive noise, so y,+1 = [E[t,+1]. Following much
of the literature on human function learning, we consider
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only one-dimensional relationships, but this approach gen-
eralizes naturally to the multi-dimensional case. In machine
learning and statistics, this is referred to as a regression
problem. In this section, we discuss how regression prob-
lems can be solved using Bayesian statistics, and how the
result of this approach is related to Gaussian processes, a
formalism with close ties to associative learning. Our pre-
sentation follows that in Williams (1998). See Appendix A
for a more thorough treatment of the mathematical details.

Bayesian linear regression
Ideally, we would seek to solve our regression problem by

using not just the observations of x and t, but some prior
beliefs about the probability of encountering different kinds
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of functions f(-) in the world. We can do this by applying
Bayes’ rule, with

p(talf. X)) p(f)
f]—‘p(tn|fa X)) p(fdf”

Knowledge of which functions in the space of possibili-
ties F is more likely to be the true function is captured by
p(f), the prior distribution. The probability of observing
the values of t,, if f were the true function is given by the
likelihood function p(t,|f, X,), and the probability that f
is the true function given the observations x,, and t,, is the
posterior distribution p(f|X,, t,). In most regression mod-
els, the likelihood is defined by assuming that any deviation
from the true function is due to many independent sources
of noise—more specifically, that #; is Gaussian with mean
yi = f(x;) and variance 0,2. Predictions about the value
of the function f for a new input x,4; can be made by
integrating over all functions in the posterior distribution,

p(f1Xn, ty) = (D

PYnt1Xng1, ta, Xp) = /f POnv1lfs xnr 1) p(f X, t)df
2

where p(yu+1lf, Xxn+1) is a delta function placing all of
its mass on y,4+1 = f(x,41). Performing the integration
outlined above can be challenging, but it becomes straight-
forward if we limit the hypothesis space to certain specific
classes of functions. If we take F to be all linear func-
tions of the form y = bog + xbj, then our problem takes
the familiar form of linear regression. To perform Bayesian
linear regression, we need to define a prior p(f) over all
linear functions. Since these functions are identified by the
parameters bg and by, it is sufficient to define a prior over
b = (bo, b1), which we can do by assuming that b follows
a multivariate Gaussian distribution, which results in a pos-
terior distribution over b that is also a multivariate Gaussian
(see Bernardo and Smith (1994)). Linear transformations
of Gaussian distributions are also Gaussian, so the predic-
tive density Eq. 2 is also Gaussian, and the noise introduced
between true values ¢ and observations y simply adds to the
variance of this distribution.

While considering only linear functions might seem
overly restrictive, linear regression actually gives us the
basic tools we need to solve this problem for more gen-
eral classes of functions. Many classes of functions can be
described as linear combinations of a small set of basis func-
tions. For example, all kth degree polynomials are linear
combinations of functions of the form 1 (the constant func-
tion), x,xz, ...,xk. Letting ¢(1), . ¢(k) denote a set of
functions, we can define a prior on the class of functions
that are linear combinations of this basis by expressing such
functions in the form f(x) = bo+¢™" (x)b1 +...4+¢® (x)by
and defining a prior on the vector of weights b. As long as

the prior over weights is Gaussian, the same results apply as
in the simple linear case.

Gaussian processes

Another approach to regression problems is to forgo any
explicit representation of the underlying function and focus
on making predictions. If our goal is merely to predict y, 41
using x,+1, t,, and x5, we might simply define a joint distri-
bution on t,, 1 given X,11 and find its expected value, which
is equal to y,1, after conditioning ont,,:

P11, Xn)
Pt |xn41, Xn) .

P(tn+11Xn+1, Xn, tn) = 3
This equation expresses the problem of regression in very
general terms, and may, at first glance, seem daunting to
compute: it involves defining a joint distribution over all
of the points observed so far, as well as the joint distribu-
tion including the new, unknown point. Further, if we want
to predict y,+1, we must be able to take the expectation of
this quotient. However, in some circumstances, the proba-
bility of #,41 given x,41, Xp, and t,, has a straightforward
analytical solution, and an easily computed expectation.
One such case, which will be our focus here, is when
all t,+; values are jointly Gaussian. In other words, t, 1
is distributed according to a single multivariate Gaussian,
with dimensionality corresponding to the number of points
under consideration. This is determined by its mean and
covariance matrix, and once these are specified, we have a
solution for Eq. 3: the quotient has a closed form for mul-
tivariate Gaussians (see Rasmussen and Williams, 2006, for
details). As we will see, assuming a jointly Gaussian distri-
bution is not a strong constraint, and we can express a very
broad set of relationships through our choice of means and
covariances.

Both the mean vector and the covariance matrix are deter-
mined by the values of x. Broadly speaking, the mean vector
captures expectations about how the function looks in the
absence of data, and the covariance matrix—or the kernel
function that generates it—captures expectations about how
points relate to one another. The covariance matrix entry for
any pair of t-values (#;, ¢;) is given by a function K (x;, X;),
plus a diagonal matrix capturing the noisy relationship
between the underlying values y; and the observations ¢;. we
can Using this covariance matrix, we can obtain the distri-
bution of #,+1 conditional on t,. The function K (-, -), called
the kernel function, can be chosen arbitrarily as long as the
covariance matrix it produces is valid.

One common kind of kernel is a radial basis function,

e.g.,

) = 02 exp(— (i — x)?
K (xi, xj) = 6] exp( 02 (xi —x;)7) 4
2
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which leads to ¢ values that are more strongly correlated
when their corresponding x values are more similar, with
the parameters 6; and 6, determining how quickly the cor-
relation falls off as differences in x values increase. Other
kernels are possible, including periodic functions such as

K (xi,x;) = 63 exp (92 (cos (29—”[x,~ —x,-]))> Q)
5

indicating that values of y for which values of x are close
relative to the period 63 are likely to be highly correlated.

This approach to prediction, in which a kernel func-
tion applied to x defines a normal distribution on #-values,
is called a Gaussian process. A wide variety of kernel
functions are possible, corresponding to varied commit-
ments about which x values are likely to lead to similar
t-values, making Gaussian processes a flexible way to solve
regression problems.

Two views of regression

Bayesian linear regression and Gaussian processes appear
to be quite different approaches. In Bayesian linear regres-
sion, a hypothesis space of functions is identified, a prior on
that space is defined, and predictions are formed by aver-
aging over the posterior distribution of y, while Gaussian
processes simply use the similarity between different values
of x, as expressed through a kernel, to predict correlations
in values of y. It might thus come as a surprise that these
approaches are equivalent.

Showing that Bayesian linear regression corresponds
to Gaussian process prediction is straightforward. The
assumption of linearity means that the vector y,41 is
equal to X,+1b. Given normally distributed weights, it
follows that p(y,+1/X,+1) is a multivariate Gaussian distri-
bution with mean zero and covariance matrix X, E;,X’{ 1
Bayesian linear regression thus corresponds to prediction
using Gaussian processes, with this covariance matrix play-
ing the role of K,,;1 above (i.e., using the kernel function
Kxi,x;) = [1 x][1 xj]T). Using a richer set of basis
functions corresponds to taking K, 11 = ®,,41 % <I>Z+] ,l.e.,

Keix =[1606) - 9V [1o0a) . sYen]'
©

where ¢ are k arbitrary functions of x (Williams 1998).
It is also possible to show that Gaussian process predic-
tion can always be interpreted as Bayesian linear regression,
albeit with a potentially infinite number of basis functions.
Just as we can express a covariance matrix in terms of its
eigenvectors and eigenvalues, we can express a given kernel
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K (x;, x;) in terms of its eigenfunctions ¢ and eigenvalues
A, with

K(xi,x)) =y P )p® (x)) (7)

k=1

for any x; and x; (Minh et al. 2006). Thus, any kernel
can be viewed as the result of performing Bayesian lin-
ear regression with a set of basis functions corresponding
to its eigenfunctions, and a prior with covariance matrix
Y, = diag(A).

These results establish an important duality between
Bayesian linear regression and Gaussian processes: for
every prior on functions, there exists a corresponding ker-
nel, and for every kernel, there exists a corresponding prior
on functions. Bayesian linear regression and prediction with
Gaussian processes are thus just two views of the same
solution to regression problems.

Combining rules and similarity through Gaussian
processes

The results outlined in the previous section suggest that, in
the context of regression, learning using rules—as expressed
in a Bayesian linear regression model, and generalizing
based on similarity, as expressed in a Gaussian process’s
kernel function—are mutually compatible points of view.
In this section, we briefly describe how previous accounts
of function learning connect to these statistical models, and
then use this insight to define a model of human function
learning that combines the strengths of both approaches.

Reinterpreting previous accounts of human function
learning

That idea of human function learning as a kind of statisti-
cal regression connects directly to Bayesian linear regres-
sion. Many rule-based models (e.g., Koh and Meyer, 1991
Carroll, 1963) can be framed in terms Bayesian linear
regression while retaining all of their basic commitments
and predictions. Similarly, the basic ideas behind Gaus-
sian process regression (with a standard radial-basis kernel
function) lie at the heart of similarity-based models such
as ALM. In particular, ALM and the associative-learning
component of EXAM implement cubic spline approxima-
tion (McDaniel and Busemeyer 2005), which can be repre-
sented using Gaussian processes (Rasmussen and Williams
2006). Similarly, neural network approaches to similarity-
based generalization are directly related to Gaussian pro-
cesses, with some networks having a perfect mapping to
a corresponding Gaussian process (Neal 1994). Gaussian
processes with radial-basis kernels can thus be viewed as
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implementing a simple kind of similarity-based generaliza-
tion, predicting similar y values for stimuli with similar
x values. The hybrid approach to rule learning taken by
McDaniel and Busemeyer (2005) is also closely related to
Bayesian linear regression. The rules represented by the
hidden units serve as a basis set that specifies a class of
functions, and applying penalized gradient descent on the
weights assigned to those basis elements serves as an online
algorithm for finding the function with highest posterior
probability (MacKay 1995).

Mixing functions in a Gaussian process model

The relationship between Gaussian processes and Bayesian
linear regression suggests that we can define a single model
that exploits both similarity and rules in forming predic-
tions. We can do this by choosing a hypothesis space that
covers a broad class of functions, including both those con-
sistent with a radial basis kernel and those taking simple
parametric forms. This is equivalent to modeling y as being
produced by a Gaussian process with a kernel corresponding
to one of a small number of types. Specifically, we assume
that observations are generated by a function that is linear
with positive slope, linear with negative slope, quadratic, or
nonlinear but generally smooth. Figure 4 depicts samples
from these individual kernels. This combination is one way
to express the total prior over functions in Eqs. 1 and 2, with
p(f) = Y x p(flk)P(k), where k represents a particular
kernel in the set of four we have mentioned. For examples of
functions that are likely under each of the different kernels,
see Fig. 4.

We do not claim that the specific kernels compose an
exhaustive account of the relationships that people and learn
and extrapolate from. Rather, we believe that people find
these relationships especially easy to learn, and especially
plausible or likely as explanations of data in the face of
uncertainty, based on the results of Brehmer (1971) and
DeLosh et al. (1997) and Kalish et al. (2007).

A more complete account would include kernels that
permit a wide variety of extrapolation patterns (e.g., Bott
and Heit, 2004) , but for the data we will consider such
an expansion would add to the complexity of our models
without substantially changing our predictions (see Lucas
et al. (2012) for a demonstration of how Gaussian pro-
cess models can be used to predict a variety of non-linear
extrapolations). The probabilities of the different relation-
ship types are defined by the vector . The relevant kernels
are introduced in the previous sections (where “Nonlinear”
corresponds to the radial basis kernel), with the positive
and negative kernels having different means in their distri-
butions over weights b, taking mean intercepts and slopes
of [0 1], [1 —1], respectively. Using this Gaussian process
model allows a learner to simultaneously make inferences

about the overall type and specific form of the function from
which their observations are drawn.

In developing this kind of model and selecting this par-
ticular set of priors—reflected in our choice of kernel
functions—we are making explicit commitments about the
inductive biases that shape human function learning. These
include what types of relationships are more subjectively
probable than others, and the more specific forms that rela-
tionships of a given type are likely to take. Our model does
not, however, commit to any specific process by which those
biases shape people’s inferences, which might resemble, for
example, the associative mechanisms present in POLE or
EXAM or an elaboration the hypothesis-testing framework
offered by Brehmer.!

Basic tests of the Gaussian process model

In the remainder of the paper, we will evaluate our Gaus-
sian process approach to function learning using each of
the empirical phenomena we discussed earlier. First, fol-
lowing the approach taken in McDaniel and Busemeyer’s
(2005) review of computational models of function learn-
ing, we look at two quantitative tests of Gaussian processes
as an account of human function learning: reproducing the
order of difficulty of learning functions of different types,
and extrapolation performance. As indicated earlier, there is
a large literature consisting of both models and data con-
cerning human function learning, and these simulations are
intended to demonstrate the potential of the Gaussian pro-
cess model rather than to provide an exhaustive test of its
performance. See Appendix B for a summary of the param-
eters in our model, and Appendix C for a description of the
procedures used to generate model predictions.

Difficulty of learning

As discussed above, one important measure of a theory of
human function learning is its ability to account for the rel-
ative difficulty people have in learning different kinds of
relationships. Table 1 is an augmented version of results
presented in McDaniel and Busemeyer (2005) which com-
pared several models’ prediction errors to humans’ errors
when learning a range of functions. Each entry in the table
is the mean absolute deviation (MAD) of human or model
responses from the actual value of the function, evaluated

'In obtaining predictions from our model, we use sampling methods
that are described in Appendix C. There has been recent work sup-
porting the idea that sampling may explain the inferences that humans
make in many domains (Griffiths et al. 2012), but our predictions
are not coupled to any inference procedure and we do not have data
distinguishing between different mechanistic or implementation-level
accounts.
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Fig. 4 Samples from the four
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over the stimuli presented in training. The MAD provides a
measure of how difficult it is for people or a given model to
learn a function. The data reported for each set of studies are
ordered by increasing MAD (corresponding to increasing
difficulty). In addition to reproducing the MAD for the mod-
els in McDaniel and Busemeyer (2005), the table has been
expanded to contain the MADs exhibited by seven Gaussian
process (GP) models trained on the target functions.

The seven GP models incorporated different col-
lections of kernel functions by adjusting their prior
probabilities. The most comprehensive model includes
the {Positive Linear,Negative Linear,Quadratic,Nonlinear}
set of kernel functions, assigning them prior probabili-
ties proportional to 8, 1, 0.1, and 0.01, respectively.2 Six
other GP models were examined by assigning certain ker-
nel functions zero prior probability and re-normalizing the
remainder so that the prior probabilities summed to one.
The seven distinct GP models are presented in Table 1 are
labeled by the kernel functions to which they assign non-
zero probability, under the header “Model 1”. Models 2

2The selection of these values was guided by results indicating the
order of difficulty of learning functions of these different types for
human learners, but we did not optimize 7 with respect to the criteria
reported here.
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and 3, which are extensions that account for knowledge
partitioning phenomena, are discussed below. The kernels
include Linear (including both positive and negative linear
functions), Quadratic (second-order polynomial functions),
RBF (nonlinear relationships, fit by a radial basis function
kernel), LQ (linear and quadratic), LR (linear and RBF), OR
(quadratic and RBF), and LRQ (linear, quadratic, and RBF).
The MAD for each function from McDaniel and Busemeyer
(2005) is reported for each model in Table 1, along with
human MADs. The last three rows of Table 1 give the cor-
relations between human and model performance across
functions, expressing quantitatively how well each model
captured the pattern of human function learning behav-
ior. All of the GP models perform well, with every model
(except for the Linear and LQ models) providing a closer
match to the human data than any of the models considered
by McDaniel and Busemeyer (2005).

Extrapolation performance

Predicting and explaining people’s capacity for extrapola-
tion to novel stimuli is another key criterion for judging
models of function learning. In Table 2, we compare mean
human predictions for linear, exponential, and quadratic
functions (from DeLosh et al. (1997)) to those of several
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Table 2 Linear correlations between human and model predictions
for extrapolation regions

Model Linear Exponential Quadratic
EXAM .999 997 961
Model 1, Linear .996 972 277
Model 1, Quadratic .986 973 921
Model 1, RBF .996 989 921
Model 1, LQ .996 972 942
Model 1, LR .996 972 363
Model 1, RQ 985 967 941
Model 1, LRQ .996 971 513
Model 2 .996 981 955
Model 3 .996 982 957

Note: Gaussian process models with multiple kernels are denoted as
in Table 1.

models described in McDaniel and Busemeyer (2005), as
well as each of the Gaussian process models we describe
above and two model extensions that we will describe
below. While none of the GP models produce quite as high
a correlation as EXAM on all three functions, all but the
Linear and LR models make predictions that correspond
closely with human judgments. It is notable that this per-
formance is achieved with the same parameters that were
used for the difficulty of learning data (see Appendix B
for details), while the predictions of EXAM were the
result of optimizing two parameters for each of the three
functions.

Figure 5 displays mean human judgments for each of the
three functions, along with the predictions of an extended
Gaussian process model we discuss below, which incor-
porates Linear, Quadratic, and Nonlinear kernel functions.
The regions to the left and right of the solid black lines
represent extrapolation regions, containing input values for
which neither people nor the model were trained. Both peo-
ple and the model extrapolate nearly optimally on the linear
function, and reasonably accurately for the exponential and
quadratic function. However, there is a bias towards a linear
slope in the extrapolation of the exponential and quadratic
functions, with extreme values of the quadratic and expo-
nential function being overestimated. Quantitative measures
of extrapolation performance are shown in Table 2, which
gives the correlation between human and model predictions
for EXAM (DeLosh et al. 1997; Busemeyer et al. 1997) and
the seven GP models.

Summary

We have shown that our model accounts well for the relative
difficulty with which people learn different kinds of rela-

tionships, and how they extrapolate from limited training
data. More complex phenomena, such as knowledge parti-
tioning and the multiple overlapping relationships it entails,
require more complex models. The next section addresses
these phenomena, and describes a straightforward extension
of our Gaussian process model to accommodate the possi-
bility of multiple relationships while still explaining human
interpolation and extrapolation behavior.

Extending the Gaussian process model beyond single
relationships

In most models of function learning, including the Gaussian
process-based models described above, it is assumed that
people learn a single relationship between a variable and
its predictors. There might be a complex, non-linear rela-
tionship between x and f(x), but for a single value of x,
f(x) is always unimodal and relationships are never compo-
sitions of other relationships. We have mentioned that this
assumption fails to describe many real relationships, and, as
knowledge partitioning results show, it also fails to explain
human behavior.

Of the models we have described, only the POLE
model (Kalish et al. 2004) makes predictions that are con-
sistent with knowledge partitioning phenomena, doing so
by appealing to the mental representations and processes
people use when learning functions. We will show that a
rational analysis of function learning leads to a similar set of
predictions. In many real-world situations, two variables x
and y will relate to one another in different ways, depending
on context. If y depends on w in addition to x, i.e., the true
functionis y = f(x, w), and w is not observable, the appar-
ent relationship between x and y may have discontinuities,
and it may not be a function at all, having multiple values
of y for a given x. We previously discussed examples of
such relationships, including acceleration in hybrid cars and
dose-response curves in a patient population. Other exam-
ples of hidden mediators include the relationship between
brake pressure and acceleration, mediated by surface slip-
periness, and the relationship between the temperature of
a material and its malleability, mediated by its unobserved
crystal structure, as with the temper of a piece of metal.
With these intuitions in hand, we will now describe how our
model may be extended to reflect them.

Mixtures of Gaussian process experts

We extended our Gaussian process model (Model 1), to cap-
ture the assumption that each point belongs to one of an
unknown number of underlying relationships. Clearly, there
is no fixed bound on the number of relationships that might
obtain between x and y, but one would expect that fewer
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Fig. 5 Extrapolation performance, with mean predictions on lin-
ear, exponential, and quadratic functions for human participants from
(Delosh, Busemeyer and McDaniel 1997) and a mixture of Gaussian
process experts (Model 3; see text). Training data were presented in the

relationships should be more plausible than more, as a mat-
ter of simplicity or parsimony (Chater and Vitanyi 2003).
There are multiple ways to express this intuition formally,
but one obvious choice is to allow points to be divided
into arbitrary partitions, assigning each partition a prob-
ability using a Chinese Restaurant Process prior (Aldous
1985), which has previously been used in rational analyses
of categorization (Anderson 1991; Sanborn et al. 2010).
Under this prior, the likelihood that a new (x, y) pair will
be assigned to an existing relationship is proportional to the
number of other points that participate in that relationship,
and the likelihood that it will be assigned to a new relation-
ship is proportional to a parameter «. More precisely, the
probability that the i point’s relationship r; will be k is

nk

ifng >0,

i
Pr(ri = k) = 3
ifng =0

+

where ny is the number of points already participating in
relationship k. The likelihood of the data under a given parti-
tion is determined by how likely the ensemble of y values is,
given the nature of the relationships they participate in and
their corresponding x values. This conceptually straight-
forward extension from Gaussian processes to a mixture
of Gaussian processes will be called Model 2. We might
also wish the capture the intuition that (x, y) pairs that
have similar x values are more likely to participate in the
same relationships—in other words, relationships tend to be
locally smooth and unimodal. This expectation can be built
into the model by assuming that the likelihood that a point
belongs to a partition is determined in part by its close-
ness to current members, represented using the x-value’s
likelihood under a Gaussian distribution based on existing
members. This last model, Model 3, is an example of a mix-
ture of experts (Jacobs et al. 1991; Erickson and Kruschke
1998; Kalish et al. 2004), an approach that has been applied
to Gaussian processes in the past (Rasmussen and Ghahra-
mani 2002; Meeds and Osindero 2006). As with Model 1,
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region spanned by a solid black line, and extrapolation performance
was evaluated outside this region, with the true function represented
by dashed lines

Models 2 and 3 can be interpreted in terms of Bayesian lin-
ear regression or Gaussian processes, where every Gaussian
process kernel for every expert can be represented as a linear
regression model, albeit, as before, with a potentially infi-
nite number of features. See Fig. 6 for samples of the kinds
of relationships that the mixture of Gaussian process experts
(henceforth Model 3) favors.

Knowledge partitioning

Before applying Models 2 and 3 to knowledge parti-
tioning phenomena, we evaluated them against the same
difficulty-of-learning and extrapolation results with which
we assessed our original Gaussian process models. As with
the earlier models, we used the same parameters for all
of the experiments, and obtained close fits to human judg-
ments, summarized in Tables 1 and 2 (see Appendix B for
details of parameters and fits). We also plotted predictions
for Model 3 against mean human judgments in the extrap-
olation experiments in Fig. 5. In general, Models 2 and 3
performed as well as any other model, and better than the
majority of the alternatives.

To gauge the extent to which the models’ predictions
are consistent with knowledge partitioning phenomena, we
obtained individual predictions from twelve participants
in (Kalish et al’s 2004) studies, four per experiment.3
Each experiment included training points and interpolation
regions that were designed to elicit multiple modes in y for
a given x. For example, in Experiment 1, there was a gap
between two partial linear functions with the same slope
and different intercepts. Many participants made judgments
in the gap that matched both functions, leaving a bimodal
response distribution. Like Kalish et al., we focus on show-
ing that our model captures the bimodal responses of the

3The full data set was not available, but the combined distribution
of judgments for the 12 participants was consistent with the overall
distribution reported in (Kalish et al. 2004).
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Fig. 6 Samples from Model 3. The left plots show samples drawn
from an infinite mixture of experts with « = .1, favoring a small num-
ber of distinct relationships. The right plots show samples drawn from
a mixture with « = 10, favoring a large number of distinct relation-
ships. Because of the diffuse prior over locations in the x-axis in Model
3, randomly drawn samples tend not to concentrate in x and thus look
similar to samples drawn from Model 2

participants, and gives a posterior distribution that matches
the distribution of actual judgments.

The results are summarized in Fig. 7, comparing Models’
1, 2, and 3 predicted probabilities of different y values to
those given by participants. Model 1 predicts the aggregate
trend in Kalish et al.’s Experiment 1, but cannot explain the
discontinuities exhibited by two of the participants shown
in Fig. 1) or the multiple modes evident in participants’
judgments for Experiments 2 and 3. In contrast, Models
2 and 3 predict the multiple relationships will be inferred.
Model 3, being sensitive to the proximity of points, is more
likely than Model 2 to group points into local relationships,
as is apparent in its predictions for Experiment 1 We used
a single prior distribution across the different experiments
and participants, but the individual differences in Fig. 1 are
readily explained in terms of different participants having
different inductive biases. Future work, with more extensive
within-subjects data, would permit us to test our model as
a framework for understanding how inductive biases vary
between individuals.

Iterated learning
As a final measure of Gaussian process models of func-

tion learning, we compared their predictions to human
judgments in the iterated learning experiments of Kalish

et al. (2007). As mentioned earlier, iterated learning designs
involve a chain of learners in which each individual
observes data, makes inferences from those data, and uses
those inferences to provide data to the next learner in the
chain. For function learning specifically, each observation
is an (x, y) pair, and the data that a learner passes forward
is a subset of his or her y-predictions for new x-values.
Ideally, these judgments would reflect samples from the
inferred underlying function, with variance attributable only
to uncertainty about that function, and, potentially, inferred
noise around that function. In practice, however, partici-
pants’ judgments are subject to errors in perception and in
recording their judgments, as well as varying degrees of
motivation and attention. Rather than attempting to model
these factors—which are underdetermined—we chose to
apply our mixture-of-experts model to the same tasks that
human faced as-is, looking for the same qualitative pat-
terns that human learners demonstrated. As in Kalish et
al’s experiments, we ran chains in which the first itera-
tion’s observations, or the initial data, were drawn from
four functions, including positive linear, negative linear, U-
shaped, and random functions. For each subsequent round,
the model used 50 predictions generated from the previous
round, like the human learners.

The human learners’ judgments revealed several broad
patterns, shown in Fig. 2, which we used as the basis for our
evaluation, including: (1) given positive linear initial data,
judgments were consistently positive linear over succes-
sive rounds; (2) a shift toward positive linear functions for
the negative linear, U-shaped, and random initial data, with
transitional states reflecting uncertainty or inferences to
high noise or multiple overlapping relationships—in almost
all chains, there are intermediate states that deviate from
any simple, well-formed function; and (3) greater stability
and slower transitions in the negative linear case than in the
U-shaped and random cases.

Figure 3III shows that Model 3 demonstrates each of
these features. Like many human learners and the POLE
and EXAM models (Fig. 31 and II), it preserved positive lin-
ear relationships, with small deviations from a O—intercept
1-slope relationship that are due to our treatment of out-
of-range samples: when the model samples y values that
are greater than 1 or less than O, those values are resam-
pled, leading to a slight flattening of the slope. A policy of
converting out-of-range samples by replacing them with the
most extreme value would reduce this effect. Like human
chains and the POLE model’s predictions, but not EXAM’s,
iterations following U-shaped initial data included cases of
overlapping positive and negative relationships. Like several
human learners, random initial data led to the GP model to
offer overlapping, weakly sloped linear relationships before
shifting towards a single positive linear relationship. Finally,
like human learners, the GP model tended to preserve the
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Model 1 Densities, Experiment 1

T

>0.5

Model 2 Densities, Experiment 1

Fig. 7 Plots comparing human judgments in Experiments 1-3 of
(Kalish et al. 2004) to the predictions of Models 1, 2, and 3. The
points represent individual human judgments, aggregated over four

negative linear relationships more than U-shaped and disor-
dered relationships. The most salient difference between the
GP Model 3 and human learners is its slower convergence
to positive linear relationships.

There are several ways in which we might account for
this difference in convergence rates. First, our priors over
types of relationships were not fitted to human behavior, and
one more strongly favoring positive linear relationships—or
a lower variance in the distribution of slopes—would nat-
urally lead to faster convergence. Second, a more nuanced
view of noise would be consistent with the differences
in convergence rates. For example, our model assigns a
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Model 1 Densities, Experiment 2

Model 1 Densities, Experiment 3

individuals for whom data were available, while the colors repre-
sent log probability densities, with hotter colors representing higher
probabilities

very low probability to “random” relationships, in which
points have very high variance, whereas participants might
expect that some points are anomalies, analogous to equip-
ment failures. Third, the rapid convergence of human chains
might be explained in part by differences between individ-
ual human learners. For example, specific individuals might
have stronger expectations that relationships are positive
and linear, and believe more strongly that their observations
are only noisy reflections of the underlying relationship. As
with individual differences in knowledge partitioning, all of
these possibilities could be explored using within-subjects
data.
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General discussion

Function learning is one of the core inductive problems that
we encounter every day, arising whenever we need to learn
the relationship between two continuous variables. Models
of function learning have explained the human ability to
solve this problem in terms of different cognitive mecha-
nisms, such as inducing rules or generalizing on the basis
of similarity. We have shown that these different cognitive
mechanisms correspond to different strategies for solving
the abstract computational problem of regression, and that
both can be expressed as special cases of a Bayesian solu-
tion to this problem based on Gaussian processes. This
perspective helps to reveal the commonalities between these
different mechanisms, and to define models that combine
their strengths. The resulting models provide a good fit
to human data, performing similarly to the best mechanis-
tic accounts, and provide a way to transparently identify
the inductive biases that guide human learners in function
learning tasks.

In our introduction, we stated that our model is intended
to complement, rather than replace, existing accounts of
function learning: we focus on the inductive biases that
shape function learning, rather that the processes by which
it occurs. In the remainder of this paper, we will discuss the
relationship between these levels of analysis, the project of
identifying human inductive biases, and some of the ways
in which our work could be extended.

The roles of models at different levels of analysis

Our focus in this paper has been on understanding human
function learning by identifying the underlying computa-
tional problem and the assumptions that seem to yield par-
allels between optimal solutions to this problem and human
behavior. This approach is in the spirit of the approach of
rational analysis laid out by (Anderson 1990), yielding an
explanation of behavior that lies at what (Marr 1982) termed
the “computational level”. The results of this investigation
are quite different from those yielded by a more tradi-
tional modeling approach operating at what (Marr 1982)
termed the “algorithmic level” and focusing on identifying
the cognitive mechanisms underlying human behavior. The
previous models of function learning we have discussed in
this paper are defined at this level, making claims about the
aspects of human memory and reasoning that contribute to
their performance on function learning tasks.

The focus on the computational level establishes a clear
set of goals for our model. First, we are not trying to define
the single best model of human performance on function
learning tasks, because our computational-level model is not
in competition with algorithmic-level models. It is entirely

possible for our computational-level analysis to be correct,
and for it to be executed at the algorithmic level by cognitive
mechanisms that resemble existing psychological process
models. In this case, we would expect both kinds of mod-
els to fit well (and possibly the process models to fit better,
since they will capture idiosyncrasies of behavior due to
the way in which the computational-level solution is carried
out). Our goal is to show that the computational-level solu-
tion we have proposed does a good job of capturing human
behavior, and existing algorithmic-level models provide a
good yardstick against which to measure this performance.

Second, a key part of our contribution is theoretical. We
have shown that algorithmic-level mechanisms that seem
quite different can in fact be captured in a single theoreti-
cal framework at the computational level, and that this leads
to new ways of thinking about combining the strengths of
these approaches. This kind of contribution has a precedent
in other work examining aspects of cognition at different
levels of analysis: (Ashby and Alfonso-Reese 1995) showed
that exemplar and prototype models of categorization could
both be viewed as strategies for solving the problem of den-
sity estimation that arises when categorization is viewed
from the perspective of Bayesian inference. This demonstra-
tion of a common underlying computational-level problem
(and connections to ideas in statistics) provides the foun-
dation for recent work on rational models of categorization
that can interpolate between exemplar and prototype rep-
resentations (Sanborn et al. 2010). We view our analysis
as making a similar contribution for the case of function
learning, providing an explicit link between existing cogni-
tive models and ideas from statistics that leads to new ways
of understanding human behavior. A probabilistic approach
also provides a basis for understanding a broader range of
phenomena, including not just patterns of interpolation and
extrapolation judgments. For example, one can use explain
the influence by linguistic and contextual information on
function learning (Byun 1995) in terms of priors, and under-
stand people search for new information (Borji and Itti
2013) or benefit from different kinds of instruction (Lindsey
et al. 2013).

Capturing human inductive biases

In inductive problems, such as function learning, the right
answer is underdetermined by the available data. This
means that doing a good job of solving the problem requires
having good inductive biases—those factors other than
the data that lead a learner to favor one hypothesis over
another (Mitchell 1997). When viewed from the abstract
computational level, the key challenge in explaining human
inductive inference is characterizing our inductive biases.
Bayesian models of cognition make this task particularly
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clear, as the inductive biases of these models are expressed
through the choice of hypothesis space and the prior on
hypotheses.

In function learning, the characterization of the inductive
biases of a learner is particularly clear: it corresponds to a
prior distribution on functions. As we have discussed, defin-
ing a prior distribution on functions is challenging, since
there are uncountably many possible functions, dependent
on an unbounded number of latent variables. The Gaussian
process models we have explored provide a succinct way of
expressing priors on functions that is nonetheless extremely
flexible in the range of distributions that it allows, and
thus provide a powerful tool for exploring human inductive
biases for function learning. We can express the assump-
tions behind this prior in terms of a kernel function, which
captures the similarity between stimuli, in terms of a set
of basis functions, which express a representation of these
stimuli, or through samples from the resulting distribution
over functions, providing three different ways to indicate the
inductive biases that a learner has.

Being able to characterize human inductive biases in
terms of a probability distribution over functions also makes
it straightforward to make automated learning systems that
are guided by the same inductive biases. We can easily
take the prior assumed by our Gaussian process models and
use it as a component of Gaussian process models used
in machine learning or statistics. This provides a natural
bridge between human and machine learning, and an oppor-
tunity to explore whether using human inductive biases
improves the operation of automated systems as well as to
develop automated systems that make inferences that are
more comprehensible to human users.

Limitations and future directions

The models we have explored cover a wide range of results
from the literature on human function learning, but there
are still phenomena that they cannot capture and aspects of
human performance that lie outside the considerations that
normally inform a computational-level analysis. Address-
ing these limitations creates some interesting directions for
future work.

A basic omission in the formulation of our model is
that it is unable to learn cyclic functions. Since these
functions are learnable by people (although with signif-
icant difficulty Bott and Heit, 2004, Byun, 1995), this
is a weakness that should be addressed. It is straightfor-
ward to incorporate a capacity to learn cyclic functions
by including a periodic kernel in the mixture of kernels.
Incorporation of this additional kernel—with an appropri-
ately low mixture weight—would not change the predic-
tions of the model for non-cyclic functions appreciably. We
judged the corresponding increase in the complexity of the
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model to outweigh the value of capturing these additional
phenomena.

The fact that people can learn cyclic functions raises
another interesting question: Can we build an exhaustive
summary of the kinds of relationships that people can learn?
In the context of our models, this becomes a question of
what kinds of functions have support in people’s prior dis-
tributions, or what set of kernels should be included in the
mixture. Existing results support the inclusion of a relatively
small set of kernels—essentially, those that we consider plus
a periodic kernel for cyclic functions.

Another issue, also related to our prior over kernels, is
that we chose a distribution strongly favoring linear rela-
tionships. Is this prior consistent with the idea that a rational
analysis should use diffuse priors that capture the statis-
tical structure of the environment (Anderson, 1990)? It is
a shortcoming of the current work that we cannot be cer-
tain, but we believe that a linearity-biased prior is better
than alternatives. In function learning, it is not realistic to
directly measure the statistical structure of the environment,
i.e., what functions are truly more or less common: doing so
would depend on knowing what combinations of variables
are salient to human observers over long periods of time,
including, perhaps, our evolutionary history. Further, any
census of functions would reflect the cognitive and atten-
tional biases of the people who would conduct it. In the
absence of ground truth about the frequencies of functions,
we believe that the best approach is to look at what relation-
ships people think are more common, using both direct and
indirect measures. Previous studies, including many that we
have not evaluated here (see Busemeyer et al. 1997) for a
summary, and Little and Shiffrin (2009), for evidence that
people infer linear relationships given very noisy data) sup-
port the idea that linear relationships are thought to be more
common. Among these are results showing that people say
that linear relationships occur much more frequently than
non-linear ones, and showing that people tend to offer linear
relationships when prompted in the absence of data or infor-
mative context (Brehmer 1974). Even if we set aside these
results, it seems a case can be made that linear functions
are indeed very common in situations the matter to humans.
Under usual (e.g., non-relativistic) conditions, relationships
between mass, force, acceleration, velocity, distance, and
time can be expressed as collections of linear relationships,
and many physical objects have broadly similar shapes at
different scales, implying that an object’s height is a roughly
linear function of its width, for example.

Our focus on the abstract computational-level problem
underlying function learning and the nature of ideal solu-
tions to that problem means that there are aspects of human
performance that our models cannot capture. For example,
our models assume that people have perfect memory for
the stimuli and exact recall of the values of the variables
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presented on each trial. These assumptions are clearly false,
and a more realistic treatment of memory and perception
might make it possible to tease apart the assumptions in our
model that are due to these factors (e.g., high noise param-
eters) from those that capture human inductive inference
(e.g., the set of kernels appearing in the mixture). There
are going to be aspects of human performance that cannot
be captured by the kind of computational-level models we
have considered, such as sensitivity to the order in which
stimuli are presented, that may be candidates for identifying
algorithmic-level implementations of these ideal solutions
(similar to the role of order effects in categorization Ander-
son, 1991, Sanborn et al., 2010). As a starting place, it may
be worth drawing inspiration from efforts in the machine
literature to overcome the difficulty of scaling Gaussian pro-
cesses to large data sets in the face of limited memory (e.g.,
Hensman et al., 2013).

If future work is to provide a deeper understanding of
function learning, including the roles played by priors (and
free parameters more generally), learners’ limited cognitive
resources, and individual differences, it will be necessary to
go beyond the evaluation methods that have become stan-
dard in function learning, in at least two respects. First, it is
now increasingly feasible and important to examine not just
overall error rates, or aggregate correlations between model
predictions and human judgments, but the accuracy with
which a model can predict human judgments for individual
points given the values and order of previous training and
test points. In addition to making it possible to assess how
well a model can account for the process and dynamics of
function learning—which include order effects as described
above, as well as other phenomena, like the tacit belief that a
relationship might be changing over time or trials (Speeken-
brink and Shanks 2010)—such an approach is more robust
to aggregation artifacts (Navarro et al. 2006). Second, we
have taken a common approach to fitting and testing cogni-
tive models—finding global parameters or priors that give
low error or a high likelihood of the experimental data—
but this approach has drawbacks beyond the simple risk
of overfitting. Perhaps the most serious of these, in cases
where we are interested in the priors that people tacitly use,
is that this approach licenses only coarse-grained conclu-
sions about what priors are likely or plausible given the
experimental data. In the future, we hope that cheaper com-
putational resources and increasingly efficient algorithms
will make it feasible to conduct a Bayesian analysis of our
model and others, which would provide a clearer picture of
the priors that are consistent with group-level tendencies as
well as individual differences (Hemmer et al. 2014).

Finally, a key question for any Bayesian model of cogni-
tion is the origins of the inductive biases that are expressed
in the prior distribution. Having established a picture of
adult inductive biases at the start of an experiment, we can

begin to explore questions related to the development of
these inductive biases. Within the Bayesian framework, it
is possible to make inferences at the level of prior distri-
butions by using hierarchical Bayesian models (Tenenbaum
et al. 2000). In the case of our Gaussian process model, peo-
ple could learn the set of kernels or parameter distributions
for flexible kernel types (for work related to these ideas, see
Wilson and Adams, 2013, Duvenaud et al., 2013), the prob-
abilities assigned to those kernels, and other parameters of
the model. The predictions of this account of the origins of
human inductive biases for function learning can be evalu-
ated by comparing the performance of children and adults
in function learning tasks and conducting transfer learn-
ing experiments examining how people’s inductive biases
change through experience, and is an exciting direction for
future research.

Conclusions

We have presented a rational account of human function
learning, drawing on ideas from machine learning and statis-
tics to show that the two approaches that have dominated
previous work—rules and similarity—can be interpreted as
two views of the same kind of optimal solution to this prob-
lem. Our Gaussian process models combine the strengths of
both approaches, using a mixture of kernels to allow sys-
tematic extrapolation as well as sensitive non-linear interpo-
lation. Tests of the performance of this model on benchmark
datasets show that it can capture some of the basic phe-
nomena of human function learning, and is competitive with
existing process models. The result is a clear characteriza-
tion of human inductive biases for function learning, and
a new set of links between human learning and ideas in
statistics and machine learning.

Author Note This work was supported by AFOSR grant num-
bers FA9550-07-1-0351 and FA9550-13-1-0170, NSERC and SSHRC
Canada, and the McDonnell Causal Learning Collaborative. Prelimi-
nary results from the first two simulations were presented at the Neural
Information Processing Systems conference (Griffiths et al. 2009).

Appendix A: Equivalence of Bayesian linear regression
and Gaussian processes

This appendix contains a more detailed description of
how Bayesian linear regression can be expressed using
Gaussian processes, showing first that Bayesian linear
regression with normal priors on coefficients can be rep-
resented as a mean function and a covariance function
relating observed and predicted y values. Next we show
that such a representation—which describes a Gaussian
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process—can be used for prediction directly, setting aside
the linear regression interpretation.

Bayesian linear regression

In Bayesian linear regression, the goal is to use n observed
x-values, x, = (x1,...,X,), and their corresponding y-
values with added noise, t, = (1, ..., fy), to predict y,41
from x, 1. Let the hypothesis space include linear functions
of the form y = by + b1x, where the prior probability of
a given function is a multivariate Gaussian distribution on
b = (bg, b1) with mean zero and covariance X,. Apply-
ing Eq. 1 then results in a multivariate Gaussian posterior
distribution on b (see Bernardo & Smith, 1994) with

-1
E[b[x,, t,] = (aﬁz,;‘ +X,{Xn) X', )
-1 L o7 -
covibix,] = £, + =X, X, (10)
f
where X, = [1,x,] (ie., a matrix with a vec-

tor of ones horizontally concatenated with X,41)
Since y,4+1 is simply a linear function of b, applying
Eq. 2 yields a Gaussian predictive distribution, with
Yn+1 having mean [l x,4+1]E[b|x,,t,] and variance
[1 x,41]cov[b|x,1[1 x,41]17. The predictive distribution for
ty+1 1s similar, but with the addition of otz to the variance.

In the more general case where y is a function of an arbi-
trary number of basis functions ¢1, ..., ¢ of x, the same
result holds, substituting ® = [1, q)(l)(xn) qb(k)(x,,)]
for X and [1 ¢V (x,41) ... 6% (x,41)] for [1 x,41], where
¢(xn) = [p(x1) ... pCan)]"

Gaussian processes

The Gaussian process approach amounts to predicting y
using x by defining a joint Gaussian distribution on Yy,
given X,+1 and conditioning on y,, with covariance matrix

Kn kn n+1
K = ’ 11
n+1 <k,{’n+1 kn+1 ( )

where K,, depends on the values of x,,, k, ,+1 depends on
X, and x,41, and k| depends only on x,41. If we condi-
tion on y,, the distribution of y,; is Gaussian with mean
k! K,y and variance k,11 — K[, K 'Ky np1. This
approach to prediction uses a Gaussian process, a stochastic
process that induces a Gaussian distribution on y based on
the values of x. We can extend this approach to predict y,+1
from x,41, t,, and x,, by adding Utzln to K,;, where I, is
the n x n identity matrix, to take into account the additional
variance associated with the observations t,,.

The covariance matrix K,y is specified using a two-
place function in x known as a kernel, with K;; =
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K (x;, xj). Any kernel that results in an appropriate (Sym-
metric, positive-definite) covariance matrix for all x can
be used. Common kinds of kernels include radial basis
functions, e.g.,

1
K (xi, xj) = efexp(—e—zm —x)%) (12)
2
with values of y for which values of x are close being
correlated, and periodic functions, e.g.,

5 2 2
K(x;, x;) = 05 exp(6] (COS(E[M —x;1))) (13)

indicating that values of y for which values of x are close
relative to the period 65 are likely to be highly correlated.
Gaussian processes thus provide a flexible approach to pre-
diction, with the kernel defining which values of x are likely
to have similar values of y.

Appendix B: Priors and parameters

The Gaussian process model makes use of two kinds of prior
distributions: priors over different types kernels, and priors
over the parameters of the individual kernel functions. The
prior over kernels reflects past results showing that people
act in a manner consistent with the assumption that posi-
tive linear relationships as more likely than negative linear
relationships, which are more likely than quadratic relation-
ships, which are in turn more likely than arbitrary non-linear
relationships (Brehmer 1974).

In previous experiments designed to reveal prior beliefs
about the prevalence of different kinds of relationships
(Kalish et al. 2007), positive linear relationships are approx-
imately 8 times as likely as negative linear relationships, but
fewer specifics are available for the rates at which people
generate other relationships, beyond the qualitative ordering
described by Busemeyer et al (Busemeyer et al. 1997). As a
result, we choose prior probabilities proportional to 8,1, 0.1,
and 0.01 for positive linear, negative linear, quadratic, and
radial basis kernels.

The parameters for the kernels were given gamma-
distributed priors, and included the variances of the weights
and intercept for the linear and quadratic kernels, the height
and distance parameters for the radial basis kernel. In all of
these cases, the gamma distribution had a shape parameter
of 1.001, which had the effect of discounting values very
close to zero. All of the scale parameters were set to one,
except for the radial basis function’s width, or smoothness.

As discussed in the body text, Models 2 and 3, which
are mixtures of Gaussian processes and mixtures of Gaus-
sian process experts, respectively, also included a parameter
o determining how dispersed points were expected to be
over distinct experts. For Model 3, the prior over x for each
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Table 3 Model Parameters for Interpolation and Extrapolation Phe-
nomena

Table 4 Model Parameters for Iterated Learning and Knowledge
Partitioning Phenomena

atz 0 o 0,2 6 o

Model 1, Linear 0.01 NA NA Model 1 0.2 10 NA
Model 1, Quadratic 0.01 NA NA Model 2 0.001 10 10
Model 1, Radial-basis 0.10 1 NA Model 3 0.001 10 10
Model 1, LQ 0.01 NA NA

Model 1, LR 0.10 1 NA Note: Only models incorporating all kernels were considered.

Model 1, RQ 0.10 1 NA

Model 1, LRQ 0.05 10 NA hyperparameters for the kernels 6 given the observations
Model 2 0.01 10 1.00  x and t. The hyperparameters include all kernel parame-
Model 3 0.01 10 1.00 ters discussed above and the noise in the observations o2

Note: Model 1 kernels included combinations of linear (L), quadratic
(Q), and radial basis functions (R).

expert was specified by assuming two virtual points at the
extremes of the x range, and had no free parameters.

Model fitting

For the fitted parameters, we considered combinations of
o} € {0.001,0.01,0.05,0.1,0.2}, « € {0.01,0.1, 1, 10},
and 6, € {1, 10}, where 0,2 is the variance of points around
their true function, « is the dispersion parameter for the Chi-
nese Restaurant Process prior on partitions, and ; controls
the smoothness of functions under the radial basis kernel.
In all cases, we used parameters that maximized the mean
correlation between model predictions and mean human
judgments across the difficulty-of-learning and extrapo-
lation data. The remaining parameters, for variances for
non-noise terms and the radial basis function’s height scale,
were all fixed at 1. Separate fits were obtained for the POLE
data. See Table 3 for the values that were applied to the inter-
polation and extrapolation experiments, and Table 4 for the
values that were applied to the knowledge partitioning and
iterated learning experiments.

Appendix C: Inference

This appendix describes the procedures by which we
obtained predictions for each of our models.

Gaussian process model (Model 1)

To obtain predictions, we performed probabilistic inference
using a Markov chain Monte Carlo (MCMC) algorithm
(for an introduction, see Gilks et al., 1996). This algorithm
defines a Markov chain for which the stationary distribu-
tion is the distribution from which we wish to sample. In
our case, this is the posterior distribution over types and the

il
Our MCMC algorithm repeats two steps. The first step is
sampling the type of function conditioned on x, t, and the
current value of 6, with the probability of each type being
proportional to the product of p(t,|x,) for the correspond-
ing Gaussian process and the prior probability of that type
as given by m. The second step is sampling the value of
0 given X,, t,, and the current type, which is done using
a Metropolis-Hastings procedure, proposing a value for 6
from a Gaussian distribution centered on the current value
and deciding whether to accept that value based on the prod-
uct of the probability it assigns to t, given X, and the prior
p(@). In all cases, this inference procedure was iterated
8,000 times.

Mixtures of Gaussian process experts (Models 2 and 3)

The infinite mixture of Gaussian process model extends the
basic model by assigning observations to different experts,
or Gaussian processes. The prior probability that an obser-
vation will be assigned to a particular expert is determined
by a Chinese restaurant process (CRP) prior, where the
probability that a new point will be assigned to an expert is
proportional to the number of points already assigned to it,
and the probability that a point will be assigned to a new
expert is determined by «: if expert k has nj points of a total
N assigned points, a new point will be assigned to it with
probability 3, and to a new table with probability 5% .
For Model 3, the locations of points in x also influence the
experts to which they are assigned: each expert is assumed
to have a Gaussian distribution over x values with a min-
imally informative prior, defined by combining improper
constant priors for the mean and variance with two virtual
points at 0 and 1, the extremes of the range of x. This prior
leads to a t-distributed density for new points, conditional on
those already assigned to the expert (for details, see Gelman
et al., 2004).

The first steps of the inference procedure are identical
to those used for Model 1. These are followed by Gibbs
sampling for the assignments of points to experts, resam-
pling each point and assigning it to a new or existing expert
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according to its conditional probability under that expert
given all other points and all parameters (Neal 1998). Sim-
ulated annealing was used to speed mixing of the sampling
chains, which included 8,000 iterations of each step.
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