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Categorization’s central role in cognition has been
matched by its prominence in theorizing in cognitivepsy-
chology. Artificial category learning experiments have
produced a wide range of data, which have led to a large
number of explanatory theories. Consideration of data
across experimental paradigms has also led to more pow-
erful theories—for example, when a single theory (ADIT;
Kruschke, 1996) substituted for two theories in explaining
both “apparent base rate neglect” (Gluck & Bower, 1988)
and the “inverse base rate effect” (Medin & Edelson,
1988). ADIT has recently been extended to include a
third class of experiments, in which stimulus features can
take on continuous values (Kalish & Kruschke, 2000).

Many real-world categorizationproblems require atten-
tion to continuous dimensions, such as attending to size
when sorting ponies from horses or when sorting bushes
from trees. It seems desirable to explain these common
problems together with those in which stimuli differ
nominally—for example, when we categorize an illness
as a flu rather than as a cold due to the presence of muscle
aches. As I describe below, base rate effects (caused by
learning about categories that are presented with differ-
ent relative frequencies) have proven to be an important
testing ground for theories of attention in the categoriza-
tion of nominal stimuli. Given this, it is perhaps surprising
that little is known about the action of attention during
learning to categorize stimuli with continuousdimensions.
The three experiments presented here applied the base rate

manipulation to stimuli with continuous dimensions, on
the assumption that this would lead to attention shifts
within, rather than between, stimulus dimensions.

Base Rates in Category Learning
In category learning experiments, subjects are typically

presented with unlabeled instances (such as a set of symp-
toms without a diagnosis) and asked to judge which cat-
egory they belong to (i.e., make a diagnosis). Feedback is
then given (i.e., the correct diagnosis), which allows the
subject to study the stimulus along with its correct label
for a brief time. Although alternative approaches exist,
from presenting labeled stimuli (Medin, Altom, Edelson,
& Freko, 1982) to withholding feedback entirely (Ahn &
Medin, 1992; Ashby, Queller, & Berretty, 1999; Medin,
Wattenmaker, & Hampson, 1987), the supervised training
method described above is particularly useful for manip-
ulating and controlling both the order of presentation of
items and categories and their relative frequency. Al-
though order effects are highly diagnostic of the way peo-
ple learn new categories (Goldstone, 1993; Kruschke,
1996;Shanks, 1991), for the purpose of this paper, I focus
only on the effects of relative category frequency, or “base
rates,” and in particular on the inverse base rate effect and
on apparent base rate neglect.

In apparent base rate neglect, subjects seem to fail to
integrate the relative base rates into their decisions about
category membership. For example, in the original finding
of apparent base rate neglect, Gluck and Bower (1988)
trained subjects to discriminate two categories, composed
of stimuli with four dimensions. In a medical diagnosis
framework, each dimension corresponded to a particular
symptom, which was either present or absent for each
stimulus (Gluck & Bower’s, 1988, Experiments 1 and 2).
On each trial, subjects were shown a list of symptoms
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It is well known that people do not always make normative use of information about relative fre-
quencies of categories when making categorical judgments. The “inverse base rate” effect (Medin &
Edelson, 1988) is a typical example of this: Subjects violate normative reasoning principles by assign-
ing certain ambiguous stimuli as belonging to the less frequent of two categories, rather than to the
more common category. This effect has been explained as being due to the shifting of attention from
shared stimulus features to distinctive features during learning. When stimuli are defined by values
along continuous dimensions, rather than by the presenceand absence of features, then attention could
shift between dimensions or between values, or both. In three experiments, base rate differenceswere
used to determine the way in which attention is shifted during learning about stimuli with continuously
valued dimensions. Simulation modeling shows that the results are consistent with the movement of
attention both between and within stimulus dimensions.
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and asked to judge what fictitious disease that “patient”
had. Each symptom was independent of all the others
and depended only on the category from which the pa-
tient was drawn. Critically, one of the two categories was
presented three times as often as the other. By setting the
conditional probabilities of the symptoms given the dis-
eases appropriately (i.e., so that one symptom occurred
three times as often in the rare disease as in the common
disease), Gluck and Bower constructeda situation in which
the posterior probabilities of the two diseases given one
particular symptom were equal. An ideal learner should
thus be neutral about which of the two categories a stim-
ulus with just that one feature belongs to. What Gluck and
Bower found, however, was that when subjects were pre-
sented with this symptom in isolation after training, the
rare category was chosen significantly more often than
the common category. This amounts to base rate neglect,
because it is consistent with considering only the condi-
tional probabilities(which favor the rare disease 3:1), and
ignoring the relative frequency of occurrence of the two
diseases.

The second base rate related finding is termed the in-
verse base rate effect. The inverse base rate effect is said
to occur when subjects classify an ambiguous stimulus
that “ought” to belong to a more frequent category (by
application of Bayes’ theorem) as belonging to the less
frequent category. Apparently, the subject believes the
base rates to be the inverse of what they really are—thus
the name of the effect. Medin and Edelson (1988) initially
observed this effect (described below in detail), using bi-
nary predictor dimensions similar to those of Gluck and
Bower (1988).

Despite the similarity between the experimental pro-
cedures, Gluck and Bower (1988) and Medin and Edel-
son (1988) each provided a separate account of their own
data. Gluck and Bower showed that a connectionist im-
plementation of prototype theory, the component cue
model, could account for base rate neglect. Medin and
Edelson, however, argued that a particular model based
on instances instead of prototypes, known as the context
model (Medin & Schaffer, 1978; Nosofsky, 1986), was
needed to account for the inverse base rate effect. How-
ever, the context model could work only if provided with
a mechanism for moving attention from one dimension
to another. Kruschke (1992) implemented the general-
ized context model as a connectionist network and aug-
mented it with a learning rule for adjusting the attention
weights. This ALCOVE model captured a great many re-
sults in category learning, but initial claims that the model
accounted for base rate neglect proved to be in error
(Lewandowsky, 1995). For a time, then, it did not appear
that any single model could explain the full range of base
rate related effects in category learning.

In response to this situation,Kruschke (1996) provided
a unified account of both apparent base rate neglect and
the inverse base rate effect, showing that a prototype
model with rapidly shifting dimensional attention (called
ADIT ) could quantitatively explain both phenomena.
Like Gluck and Bower’s (1988) component cue model,

ADIT has a set of input nodes, each of which is active
when a particular feature (symptom) is present and inac-
tive when it is absent. Unlike Gluck and Bower’s model,
these nodes are connected by two weights to each of the
category nodes, which represent the disposition to choose
that category. One set of weights is slowly adapted in re-
sponse to error and represents what is learned about the
categories,whereas the other set is rapidly adaptedand rep-
resents a shifting attentional bias for or against individual
dimensions. The attention strengths are also reset at the
beginning of each trial, so that associative weights alone
carry long-term effects of learning.Additionally, attention
strengths are normalized after each shift, so that, unlike
associative weights, when attention to one dimension
grows, attention to other dimensions must diminish.

A major limitation of this model is that it is restricted
to discrete, separable dimensions. In all three of the ex-
periments in Kruschke (1996), stimuli were composed
of multiple dimensions; however, each dimension could
take only one value, and that value was either present or
absent on each trial. An alternative design for the exper-
iment is to allow each dimension to take one of two val-
ues and then present only one of the values on each trial.
Gluck and Bower’s (1988) Experiment 3 (see also Nosof-
sky, Kruschke, & McKinley, 1992) showed that these
“substitutive” features produce base rate neglect, just as
do the present/absent features. A model such as ADIT
can accommodate substitutive features by representing
each stimulus pair (such as “dry skin” and “oily skin”)
with two input nodes, each of which signals the presence
or absence of one symptom (Gluck & Bower, 1988;
Kruschke, 1996). Essentially, the model does not identify
the substitutive features as belonging to a common dimen-
sion, nor do the subjects. Base rate effects are produced
when attention moves between stimulus features, just as
in the present/absent case.

A similar but more extreme change in the design of the
experiment is to move from the present/absent stimulus
dimensions to a continuous (rather than dichotomous)
scale. One important difference between substitutive fea-
tures and continuous scales is that a given stimulus value
on a continuous scale contains other (lesser) values, in
the way that a 10-cm line includes 1-cm lines. This dif-
ference requires a substantial change in the formulation
of ADIT, which Kalish and Kruschke (2000) have recently
provided. The extension is substantial, because, in addi-
tion to a different representation of the input, new com-
mitments must be made about the way attention can shift
over the stimulus representation. In essence, the extended
model proposed that people are able to shift attention
within a single dimension, instead of only between dimen-
sions.Suppose, for example, that a stimulus appears that is
both small and bright, and the subject gives the wrong
categorical response. In the original ADIT, the only adap-
tive change in attention a subject could make would be
to shift attention to just the size (or just the luminance)
of the stimulus. In Kalish and Kruschke’s generalized
model (called Corner), attention can shift instead to the
value of size (the smallness), a difference that is identifi-
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able the next time a large stimulus appears. ADIT predicts
that much has been learned about the size dimension,
whereas Corner predicts that nothing has been learned
about largeness.

Base rates change the way people represent contrast-
ing categories, when the stimuli have binary dimensions.
When the stimuli have continuous dimensions, it is un-
known how (or even if) the representation changes. The
Corner model predicts that changes will occur within a
dimension, because of the way attention shifts. In this
paper, I ask whether the Corner model or the originalADIT
can best predict the effects of base rate differences on the
knowledge gained during learning with continuous di-
mensioned stimuli. This analysis of attention shifts de-
rives from extensionsof the inversebase rate design,which
I now describe in detail.

Modifying the Inverse Base Rate Design
Medin and Edelson (1988) obtained the inverse base

rate effect under the following paradigm. Subjects were
trained to discriminate six categories, based on nine-
dimensional inputs (see Table 1). The input dimensions
were framed as the symptoms of f ictitious diseases,
whereas the category labels were the fictitious disease
names. The six categories were made up of three common
(C) and three rare (R) categories, with the common cate-
gories presented three times as often as the rare categories.
Each common category was paired with a single rare cat-
egory; for each pair, only three of the symptoms might be
shown. The other symptoms could be shown only when
one of the other common/rare category pairs was pre-
sented. For any one common/rare pair, there was one
symptom that was presented only when the common dis-
ease was the correct “diagnosis,” one symptom that was
present only when the correct diagnosis was the rare dis-
ease, and one symptom that was always present, regard-
less of the correct diagnosis. These are called the perfect
predictor of the common disease (PC), the perfect predic-
tor of the rare disease (PR), and the imperfect predictor
(I), respectively. Because the three category pairs were all
formally the same, discussion of the inverse base rate ef-
fect centers on the roles of PC, PR, and I.

Subjects were trained until they made the correct diag-
nosis for every member of the training set—that is, when
they correctly identified that the presentationof I and PC
together meant the patient had the common disease and
that the presentation of I and PR together meant the pa-

tient had the rare disease. After this training, subjects
were presented with PC and PR together and were asked
to make a diagnosis. Subjects selected the rare disease,
even though the common disease is more likely in this
case. This is the inverse base rate effect, so labeled be-
cause, in the absence of information—the {PR,PC} com-
bination is completely uninformative—subjects went
against the base rate.

In each of the following three experiments, the differ-
ence between the original present/absent features and the
stimuli was systematically increased. In Experiment 1,
features distributed binomially along a clear continuum
were used. Because the inverse base rate effect is sensitive
to changes in materials (Shanks, 1991), this manipulation
provided a necessary control condition. In Experiment 2,
stimulus values were drawn from uniform distributions,
but the logical structure of Experiment 1 was preserved.
In Experiment 3, stimulus values were drawn from over-
lapping Gaussian distributions, and a probabilistic classi-
fication problem was produced.

EXPERIMENT 1
Binomial Distributions

In Experiment 1, several small modifications to the
classic inverse base rate effect paradigm were presented.
First, following Kruschke (1996), I reduced the design to
two sets of common/rare disease pairs and, thus, to only
six symptom dimensions. Second, for the sake of gener-
ality, the disease names were replaced with other arbitrary
category labels—in this case, animal names. Third, the
symptoms were presented as six continuous dimensions.

Method
Subjects. Fifteen first-year students enrolled in psychology at

the University of Western Australia participated for course credit.
Apparatus. The subjects were seated in individual, brightly lit

stations, each sound-masked by a ventilation fan. At each station, a
PC-type computer displayed the stimuli on a VGA monitor and col-
lected responses using a standard keyboard and mouse.

Procedure. The subjects were asked to read instructions that de-
tailed the procedure. On each trial, six vertically oriented bars of
different colors were displayed side by side. The subjects were told
that this “graph” represented levels of different “blood proteins”
(this label appeared below the bars as well). On the basis of the col-
ored bars, the subjects were to choose one of four native Australian
animal names (quokka , koala, wallaby, numbat). The names were

Table 1
Schematic Organization of the Basic Inverse Base Rate Design

Dimension

Ik PCk PRk Category

1 1 0 Ck
1 1 0 Ck
1 1 0 Ck
1 1 1 Rk

Note—The subscript k denotes one set of dimensions and categories.
The total number of dimensions and categories depends on the number
of replications of this design within the experiment, denoted K. In Ex-
periments 1–3, K = 2; in Medin and Edelson (1998), K = 3.

Table 2
Schematic Organization of Experiment 1

Dimension

I PC PR I PC PR Category

1 1 0 0 0 0 A
1 1 0 0 0 0 A
1 1 0 0 0 0 A
1 0 1 0 0 0 B
0 0 0 1 1 0 C
0 0 0 1 1 0 C
0 0 0 1 1 0 C
0 0 0 1 0 1 D

Note—Tall bars are labeled “1”; short bares are labeled “0.”
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displayed in individual boxes on the computer monitor and were se-
lected by clicking the mouse button over them.

The schematic organization of the training stimuli is shown in
Table 2. On each trial, two of the vertical bars were tall, extending
100 mm above their bases. The remaining four bars were short, ex-
tending only 10 mm above their bases. The association of pairs of
bars with the response categories was deterministic; the task of the
subject was to learn that association.

On each trial, after the subject chose a category label, the correct
response was provided by the computer. The correct response, to-
gether with the subject’s response and the stimulus display, re-
mained available for study for up to 1.5 sec. Once the subject ac-
knowledged the feedback, again using the mouse, the next trial
appeared following a brief (500-msec) delay.

Trials were grouped together into blocks. In each block, each of
the two common categories was presented three times, and each of
the two rare categories was presented once. Trial order was ran-
domized within each block. Each subject completed 15 contiguous
blocks. The relative horizontal order of each colored bar within the
graph was randomized between trials, so that bar color was not con-
founded with bar location. Similarly, the assignment of animal
names and bar colors to categories was randomized between sub-
jects to overcome any confounding stimulus effects.

Following the 120 training trials, the subjects entered into the
transfer phase. Eighteen test stimuli, comprising two isomorphic
sets of nine items (see Table 3), were shown twice each, in a ran-
dom order. Recall that there were six dimensions, only three of
which were involved in discriminating any one pair of categories.
Isomorphic sets are drawn by comparing across these pairs: For ex-
ample, “I” in Table 3 represents two bars, one for the first category
pair and a different bar for the second pair. On each of the 36 trans-
fer trials, no corrective feedback was given.

Results and Discussion
The total number of responses of each category given

to each of the nine transfer stimulus types is shown in
Table 3. The two responses of each subject to the iso-
morphic transfer items were taken to be independent, as
were the two replications of the item types, and so there
were 60 independentobservations for each stimulus type.
The perfect common and perfect rare predictors (PC and
PR) were both strongly associated with their respective
categories. When the PC dimension was large, there were
more “C” responses than “R” responses [c2(1, N = 50) =
19.22, p , .05] (N = 50, rather than 60, because only the
responses to the correct category pair, C and R, are con-
sidered in this analysis), whereas the PR dimension pro-

duced the opposite pattern [c2(1, N = 55) = 41.89, p =
.05]. Large values of the imperfect predictor dimension,
I, were associated with the common category marginally
more than the rare category [c2(1, N = 55) = 3.56, p =
.06]. Thus, the subjects appear to have learned the basic
nature of the classification task.

When all three predictors were presented together, the
subjects seemed to choose the common category more
often than the rare category, although this was not signif-
icant [c2(1, N = 55) = 1.16, p = .28]. This suggests that
the PR dimension is similar in strength to the combina-
tion of {I,PC}. However, when the I and PC predictors
were associated with a category pair different from the
PR predictor—so that it was the “PR” of the “other” cat-
egory, denoted “PRo”—the subjects chose the common
category predicted by the two [I + PC + PRo, c2(1, N =
52) = 26.32, p , .05]. Taken together, these results show
that the combination of {I,PC} is stronger than PR alone.

Critically, when the two perfect predictors alone were
placed in competition, the subjects chose the rare cate-
gory significantly more than the common category. This
was true both when the two predictors were associated
with the same category pair [PR + PC, c2(1, N = 56) =
4.02, p , .05] and when they were associated with dif-
ferent pairs of categories [PC + PRo, c2(1, N = 51) =
5.02, p , .05]. The strength of the perfect rare predictor
was also evident when the PR of one category pair was
placed in conflict with the imperfect predictor of the other
category pair (I + PRo). The total number of responses to
the rare category predicted by PRo was marginally greater
than the number of combined responses to both mem-
bers of the pair of categories predicted by the imperfect
predictor [c2(1, N = 59) = 3.32, p = .07]. In contrast,
when I of one category pair was placed in oppositionwith
PC or the other pair, there was nearly equal division of re-
sponses between the two categories predicted by the I cue
and the common category predicted by the PC [I + PCo,
c2(1, N = 55) = 0.07, p . .5].

The inverse base rate effect was thus observed, with
the single cues associated with the rare categories having
greater response strength than the single cues associated
with the common categories.These results were obtained
using stimuli that varied along a continuum.However, the

Table 3
Results of Experiment 1 and Predictions of the

Full Corner Model and the Same Model With No Attention Shifting

Response Corner No Shifting

Stimulus C R Co Ro C R Co Ro C R Co Ro

I .58 .33 .05 .03 .55 .21 .12 .12 .38 .35 .14 .14
PR .05 .87 .05 .03 .06 .82 .06 .06 .05 .73 .11 .11
PC .68 .15 .05 .12 .69 .10 .11 .11 .74 .04 .11 .11
PC + PR .33 .60 .05 .02 .31 .55 .07 .07 .37 .35 .14 .14
I + PR + PC .53 .38 .05 .03 .52 .38 .05 .05 .45 .40 .07 .07
I + PRo .18 .18 .02 .62 .24 .11 .06 .59 .23 .22 .04 .51
I + PCo .42 .07 .43 .08 .33 .14 .45 .09 .22 .21 .53 .04
I + PC + PRo .75 .03 .10 .12 .56 .06 .04 .33 .67 .05 .02 .26
PC + PRo .28 .03 .12 .57 .32 .06 .06 .55 .48 .03 .03 .45
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stimuli in Experiment 1 took only two of the infinite pos-
sible values of bar height. The presence of the inverse
base rate effect with these stimuli is thus to be expected
given the similarity between present/absent and substitu-
tive features. Subjects apparently treat large and small
bars in just the same way that they treat present/absent
verbal features.

EXPERIMENT 2
Continuous Analog of

the Inverse Base Rate Design

The challenge in extending this design to truly con-
tinuous dimensions is to reconstruct a sense in which one
dimension can perfectly predict one category. The solu-
tion chosen here is to set a criterial value for the dimen-
sion. Then, when a pattern has a value on that dimension
that is greater than the criterial value, that pattern will
always be a member of only one category. When the di-
mension has a value lower than the critical value, the pat-
tern can belong to any of the other categories. Imperfect
prediction is provided by a dimension that takes on ex-
treme values for a pair of categories.

Method
Subjects. Fifteen first-year students enrolled in psychology at

the University of Western Australia participated for course credit.
None had participated in Experiment 1.

Apparatus. The apparatus used in Experiment 2 was the same
as that used in Experiment 1.

Procedure. The subjects were given the same instructions used
in Experiment 1. The stimulus display was identical to that in Ex-
periment 1, with one exception. Each vertically oriented bar could
take on a range of values, determined both by the category that was
being presented and by a measure of uniformly distributed random
noise. Each perfect predictor took on a value in the range of
60–100 mm when the category it signaled was presented, and it
took on a value in the range of 10–50 mm otherwise. The two im-
perfect predictors took on the larger values when either of their two
predicted patterns were present, and they took on the smaller val-
ues otherwise. Each subject completed 120 trials of training, 45
each of the two common categories and 15 each of the two rare cat-
egories. Stimuli were randomly selected and were presented in a
different random order (within 15 contiguous blocks) for each sub-
ject. The spatial arrangement of colored bars was randomized be-

tween trials, whereas assignment of bar colors and responses to cat-
egories was randomized between subjects.

Following the training phase, the subjects were shown the same
38 transfer stimuli as in Experiment 1. Values of the dimensions of
the transfer stimuli were either 10 mm (short) or 100 mm (long).

Results and Discussion
The overall proportion of responses given to each of

the nine transfer stimulus types are shown in Table 4. As
in Experiment 1, the two perfect predictors (PC and PR)
were both strongly associated with their respective cate-
gories [PC, c2(1, N = 45) = 12.80, p , .01; PR, c2(1, N =
47) = 30.72, p , .01]. The imperfect predictor was
slightly more strongly associated with the common cat-
egory than with the rare category, but not significantly so
[c2(1, N = 47) = 2.13, p = .14]. When all three predictors
were presented together, the subjects chose the two cate-
gories about equally often [c2(1, N = 54) = 0.019, p . .8].
When the I and PC predictors were related to one category
pair, and the PR was related to the other category pair,
the subjects chose the common category predicted by I
and PC significantlymore than the rare category predicted
by PRo [c2(1, N = 51) = 11.29, p , .05].

As in Experiment 1, when the two perfect predictors
were placed in competition, the subjects chose the rare
category significantly more than the common category.
This was true both when the two predictors were associ-
ated with the same category pair [PR + PC, c2(1, N =
51) = 7.84, p , .01] and when they were associated with
different pairs of categories [PC + PRo, c2(1, N = 54) =
4.17, p , .05].

Despite this, the PR predictor was not quite as strong
as it was in Experiment 1. When the perfect rare predic-
tor of one category pair was placed in conflict with the
imperfect predictor of the other category pair (I + PRo),
the number of responses to the rare category predicted by
PRo was nearly the same as the number of responses to
the pair of categories predicted by the imperfect predic-
tor [c2(1, N = 57) = 0.07, p . .7]. Similarly, when an im-
perfect and PC predictor of different category pairs were
placed in opposition, there was nearly equal division of
responses between the two categories predicted by the I
cue and the common category predicted by the PC [I +

Table 4
Results of Experiment 2 and Predictions of the

Full Corner Model and the Same Model With No Attention Shifting

Response Corner No Shifting

Symptom C R Co Ro C R Co Ro C R Co Ro

I .48 .30 .08 .13 .46 .29 .12 .12 .38 .35 .14 .14
PR .07 .72 .10 .12 .06 .79 .07 .07 .05 .73 .11 .11
PC .58 .17 .12 .13 .73 .08 .09 .09 .74 .04 .11 .11
PC + PR .25 .60 .10 .05 .37 .49 .07 .07 .37 .35 .14 .14
I + PR + PC .47 .43 .10 .00 .49 .41 .05 .05 .45 .40 .07 .07
I + PRo .33 .17 .05 .45 .22 .16 .06 .56 .23 .22 .04 .51
I + PCo .27 .17 .47 .10 .27 .16 .50 .08 .23 .21 .53 .04
I + PC + PRo .63 .07 .07 .22 .57 .08 .04 .30 .67 .05 .02 .26
PC + PRo .32 .05 .05 .58 .40 .06 .06 .49 .48 .03 .03 .45
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PCo, c2(1, N = 54) = 0.02, p . .8]. Finally, when the I
and PC predictors were associated with a category pair
different from the PR predictor, the subjects chose the
common category predicted by the two [I + PC + PRo,
c2 (1, N = 51) = 11.29, p = .01].

As in Experiment 1, these results display a clear inverse
base rate effect. The effect was slightly less than with the
discrete stimuli of Experiment 1, with the I + PC combi-
nation slightly stronger.

Experiments 1 and 2 involved continuous stimulus di-
mensions, together with categories that differed in their
base rates. In both experiments, category membership was
uniquelydetermined by a single stimulus dimension tak-
ing on an exceptionally large value. Thus, the similarity
between the results of the two experiments is perhaps not
surprising. The issue, taken up below, is how to account
for this similarity formally.

With discrete stimuli, the introductionof uncertainty in
the mapping from stimulus patterns to categories results
in a greatly attenuated form of the inverse base rate effect,
known as base rate neglect (Gluck & Bower, 1988;
Kruschke, 1996). Probabilistic categorizationcomes from
allowing the same stimulus to be associated with multiple
categories. With continuous stimulus dimensions, this
can be accomplished by overlapping the range of values
that stimuli from different categories can have. In Exper-
iment 3, this manipulation was used in an attempt to re-
duce the inverse base rate effect.

EXPERIMENT 3
Overlapping Continuous Dimensions

Method
Subjects. Fifteen first-year students enrolled in psychology at

the University of Western Australia participated for course credit.
None had participated in either of the first two experiments.

Apparatus. The apparatus used in Experiment 3 was the same
as that used in Experiments 1 and 2.

Procedure. The subjects were again given the same instructions
as were used in the first two experiments. Stimulus presentation
was identical, with the exception that stimuli were drawn from over-
lapping normal distributions along all six stimulus dimensions. Di-
mensional validity for individual categories was manipulated by
changing the mean of the distribution. Stimulus values for the pre-
dictive dimensions ({I,PC} or {I,PR}, although no dimension re-

mained perfectly predictive) had a mean of 90 mm and a standard
deviation of 6 mm, whereas values for the other relevant dimension
and the three unrelated dimensions were drawn from a distribution
with mean of 45 mm and a standard deviation of 25 mm. Thus, there
was an approximately 10% chance that a stimulus value drawn from
the predictive distribution would have a value less than that of a stim-
ulus drawn from one of the unrelated (or irrelevant) distributions.

The actual set of 200 training stimuli presented to each subject
was selected randomly, according to the distribution parameters.
Stimuli were presented in a random order, within 25 contiguous
blocks in which each category occurred either three times (for com-
mon categories) or once (for rare categories). The spatial arrange-
ment of colored vertical bars varied randomly between trials, and
the assignment of bars and labels to categories varied randomly be-
tween subjects. On approximately 40 of the 200 trials, at least one
of the two large stimulus values would be less than at least one of
the four small stimulus values.

Following the training trials, the subjects moved into a transfer
phase. Transfer stimuli were identical to those used in Experiments
1 and 2, and, again, no feedback was given.

Results and Discussion
The overall proportion of responses given to each of

the nine transfer stimulus types are shown in Table 5. As
in Experiment 1, the two perfect predictors (PC and PR)
were strongly associated with their respective categories
[PC, c2(1, N = 51) = 37.96, p , .05; PR, c2(1, N = 53) =
43.47, p , .05]. Unlike in Experiments 1 and 2, the im-
perfect predictor was not significantly more strongly as-
sociated with the common category than with the rare
category [c2(1, N = 52) = 1.56, p = .21]. When all three
predictors were presented together, the subjects strongly
preferred the common category [c2(1, N = 54) = 15.57,
p , .05]. This was also true when the I and PC dimen-
sions were associatedwith one pair, and the PR dimension
was associated with the other [I + PC + PRo, c2(1, N =
57) = 51.16, p , .05].

Unlike in Experiments 1 and 2, the strength of the PR
cue was not sufficient to lead to a preference for the rare
category when the two perfect predictors were placed in
competition.Instead, the subjects chose the two categories
about equally often. This was true both when the two
predictors were associated with the same category pair
[PR + PC, c2 (1, N = 51) = 0.71, p = .40] and when they
were associated with different pairs of categories [PC +
PRo, c2 (1, N = 54) = 0.46, p = .50]. The inverse base rate

Table 5
Results of Experiment 3 and Predictions of the

Full Corner Model, and the Same Model With No Attention Shifting

Response Corner No Shifting

Symptom C R Co Ro C R Co Ro C R Co Ro

I .52 .35 .12 .02 .66 .23 .05 .05 .56 .30 .07 .07
PR .03 .85 .08 .03 .06 .80 .07 .06 .05 .72 .12 .11
PC .80 .05 .08 .07 .84 .05 .05 .05 .84 .04 .06 .06
PC + PR .48 .37 .10 .05 .48 .41 .05 .05 .47 .33 .10 .09
I + PR + PC .70 .20 .05 .05 .70 .26 .02 .02 .68 .28 .02 .02
I + PRo .38 .15 .08 .38 .39 .14 .05 .42 .41 .22 .02 .34
I + PCo .37 .28 .30 .05 .36 .14 .46 .05 .32 .17 .48 .03
I + PC + PRo .93 .05 .00 .02 .74 .08 .02 .15 .89 .03 .01 .08
PC + PRo .50 .07 .03 .40 .49 .05 .05 .42 .63 .03 .02 .31
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effect seen in the f irst two experiments was clearly
greatly attenuated, so that the subjects were effectively
treating the PR and PC features equally. The subjects ne-
glected the base rates, failing to prefer the common cat-
egory when PR and PC were placed in competition. A
between-experiments comparison supported this: There
was a significant difference in the choice frequencies of
rare and common categories across all three experiments
when PC + PR or PC + PRo were presented [c2(1, N =
313) = 14.92, p , .01]. Over 99% of this difference was
between Experiment 3 and the total of Experiments 1 and
2 [c2(1, N = 313) = 14.91, p , .01], showing that Exper-
iment 3 essentially eliminated the inverse base rate effect.

GENERAL DISCUSSION

Theoretical Modeling
The clear results of these three experiments is that the

strength of the PR cue diminished as the range of stimu-
lus values presented went from binary to continuous (but
deterministic) to continuous and overlapping. The ques-
tion that theoretical modeling can answer is, Why? The
explanationwhen stimuli are binary-valued is that people
shift their attentionbetween stimulus features in order to
reduce classification error. I explore that possibilityhere,
when the stimuli are continuously valued.

Kruschke (1996) used the concept of attention shifts to
explain the inverse base rate effect. The theory states that
people react to categorization errors by shifting their at-
tention away from stimulus features that cause error to
stimulus features that do not cause as much error. This
adaptive shift of attention has two effects. First, the per-
ceived value of a stimulus feature is amplified by the devo-
tion of attention to the feature: The feature is effectively
more salient than it was before. Second, associative learn-
ing that connects features to categories is also modulated
by attention.Shifts of attention thus determine which fea-
tures are learned about on each trial and how rapidly that
learning proceeds. This theory was formalized in the ADIT
model for present/absent features (as discussed in the intro-
duction). For the ADIT model, a “feature” is defined as a
stimulus dimension. In the present context of continu-
ously valued stimulus dimensions, this definition is no
longerobviouslycorrect. With continuousstimulus dimen-
sions, a feature could be either a dimension (such as color)
or a particular value on a dimension (such as redness).

Kalish and Kruschke (2000) provided a formulation of
attention shifting in which the definition of a feature is
taken to refer to a stimulus value, rather than a stimulus di-
mension. The Corner model uses a vector of input nodes
to represent the value of each stimulus dimension, so that
the dimension is broken up into a set of discrete features.
By using a vector to represent each dimension, Corner
can readily model the shift in attentionbetween stimulus
features as the shift in the distributionof attentionover the
“value” elements of all of the dimension vectors, regard-
less of which dimension the elements belong to.

Importantly, Kalish and Kruschke (2000) showed that
Corner is simply an extension of ADIT; if the number of
nodes per dimension drops to 1, the two models are func-
tionally identical. In order to highlight the difference of
attention shifts within versus between stimulus dimen-
sions, I show here that Corner can also be reduced to
ADIT through another method—one that introduces a
new parameter and allows hierarchical models to be con-
structed that test hypotheses about what constitutes a fea-
ture over which attention can shift. In order to introduce
this parameter, I first set out Corner formally.

Corner
A stimulus is presented to the network as a vector x of

values {x1, . . . , xN} along each of the N stimulus di-
mensions. These values are represented internally by a
set of nodes, so that the value of node i along dimension
j is given by

(1)

where mi j is the location of node i along dimension j.
This is a form of “thermometer” coding (Anderson, Sil-
verstein, Ritz, & Jones, 1997), a representation that em-
bodies the principle that large values must contain small
ones.

Attention is of limited capacity and so gets applied to
the representation of the stimulus in two steps. First, the
attentiondevoted to any given value, ai j, is set equal to the
activation of that value node, aij

in. Then, attention is nor-
malized:

(2)

where h is a free parameter (h . 0) that represents the
attention capacity available to the network.

After attention is applied, activity is multiplied by at-
tention and weights (modifiable associations) to produce
activation at each of the K category nodes:

(3)

where wijk is the weight from feature ij to category node k.
During learning, the model compares these output val-

ues (which represent dispositions to categorize the stimu-
lus into each category) with the correct category label, as
supplied by the teacher. Teacher values are given by

(4)

The comparison results in error at each category nodes:

Ek = tk 2 ak
out. (5)

The error is then passed back down to the input nodes,
where attention strengths are shifted to reduce error:
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(6)

where gvalue is the rate at which attention shifts between
dimension value nodes. After the shift is completed, neg-
ative attention strengths are set to zero because negative
attention is not possible in the model.

At this point, I can introduce the new parameter that
allows Corner and ADIT to nest within a larger model
framework. First, the error sent back to the input units can
be summed across all nodes which code a dimension, j,

(7)

This dimensional error can be used to adjust all the atten-
tion strengths applied to values on the dimension equally:

(8)

where gdimension is the dimensional attention shift rate.
These two sources of adjustment (by attention to values

and by attention to dimensions) can be combined into a
single equation

(9)

The parameter gdimension is new to this version of Corner.
If gvalue is zero, then Corner reduces to a form of ADIT,
regardless of the number of nodes coding each dimen-
sion. ADIT* (the new form) shifts attention between di-
mensions only, not within a dimension.

After attention has been shifted, it is then renormal-
ized (by Equation 2). Activation again passes up to the
category nodes, and error again passes back down. At-
tention strengths are now left unchanged, and the model
updates the association weights:

Dwi jk = laij
inaijEk , (10)

where l is the association learning rate parameter. Be-
cause attention is shifted before weights are updated,
weight changes occur only between category nodes and
features that are the focus of attention.

Two final steps are required to map network outputs
onto responses. The first is to use a choice rule to turn ac-
tivations into probabilities.The probability that the model
will choose any category K is given by

(11)

where f is a constant reflecting the certainty with which

categories are selected as responses (Kalish & Kruschke,
2000; Luce, 1963).

Up to this point, the only role for category base rates
has been in determining the order of presentationof stim-
uli to the model (via sampling). However, it is possible
that subjects in the experiment actually infer the base
rates and explicitly use this information to alter their re-
sponse selection. This possibility is considered by includ-
ing a constant,b, that reflects the value that subjects place
on (accurate) base rate information relative to stimulus-
specific information:

(12)

where N is the number of stimulus dimensions presented
(which is a constant value in these experiments), and bk
is the relative base rate (Sbk = 1) of category k.

The complete Corner model thus has six parameters:
h, the level of total available attention;l, the learning rate
of the association weights; f, the scaling constant in the
choice rule; b, the relative strength of the subjective base
rate information; and gvalue and gdimension, the two atten-
tion shift rate parameters. For convenience, I refer to the
family of models as Corner, the six-parameter version as
full Corner, the five-parameter version from Kalish and
Kruschke (2000) as Corner*, and the five-parameter ver-
sion of ADIT as ADIT*.

Nested Model Tests
Corner produces base rate effects when association

weights are formed only after attention is shifted either
within or between stimulus dimensions, or both. In order
to test the possibility that this could account for the dif-
ferences in base rate effects between the three experiments,
I fit Corner to all three data sets simultaneously. Each sub-
ject’s training series (the set of input and teacher values)
was used to train the network, which was then tested on
the set of transfer stimuli. The goodnessof fit on the trans-
fer stimuli determined the selection of Corner’s param-
eters, via a hill-climbing algorithm. I used 10 input nodes
for each dimension; similar results obtainwith more nodes.

The full Corner f it exceptionally well, with a non-
significant lack of fit [G2(75) = 95.1, p . .05, N = 1,620].
This suggests that attention shifts are important for ex-
plaining these results, and so comparison with the three
reduced forms of the model could be informative. First, if
gvalue is set to zero, then the full model can be compared
with ADIT*. If gdimension is set to zero, the full model can
be compared with Corner*. Because ADIT* and Corner*
have the same number of free parameters, they can also
be directly compared. Finally, the role of attention shifting
per se can be assessed by comparing versions of Corner to
a null model, in which both attention shift parameters are
set to zero. Because the models are all nested, likelihood
ratio tests can be used to determine the significance of any
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increases in goodness of fit provided by the addition of
new free parameters. The best-fitting parameter values of
the four Corner models are shown in Figure 1.

The four-parameter Corner without any attention shifts
fits quite well [R2(U ) = .986, relative to the homogeneous
model] but not so well that it cannot be rejected as a plau-
sible source of these data [G2(77) = 135.0, p , .01, N =
1,620]. Treating this as the null model, the five-parameter
Corner* accounts for 15.3% of the remaining variance,
which is a significantimprovement [c2(1) = 20.7,p , .01].
Similarly, ADIT* accounts for 25.7% of the remaining
variance, which is also a significant improvement [c2(1) =
34.7, p , .01]. ADIT* also fits better than Corner*, since

they both have five parameters. Against ADIT*, the full
Corner is nonethelessstatisticallysuperior [c2(1) = 5.2,p ,
.05]. This means that attention shifts within stimulus di-
mensions provide significantexplanatorypower, even after
factoring in attention shifts between stimulusdimensions.

The predictions of the full Corner and the null Corner
are shown along with the observed response probabilities
in Tables 3–5. Without attention shifts, the null Corner
cannot produce an inverse base rate effect in any of the
three experiments. The full Corner correctly produces the
effect in Experiments 1 and 2, but, like the subjects, not in
Experiment 3. Since Corner makes its predictions with-
out changing parameters between experiments, the differ-

Figure 1. The set of nested models used to fit the results of all three experiments. Pa-
rameters are defined in the text.
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ences in the strengths of the predictors between experi-
ments must be entirely due to the contingencies in effect
during training.

Corner explains the effect of the training regimes as fol-
lows. In Experiment 1, the subjects were trained with a di-
rect continuous analog of the standard inverse base rate
design (Kruschke, 1996; Medin & Edelson, 1988). On
each trial, the set of input nodes that represent the dimen-
sions with large values have more active nodes than do
the set that represent the dimensions with smaller values.
These extra nodes are available to be associated with the
response categories. Very early in training, associations
develop between the value nodes of the I and PC dimen-
sions and the common category. When a rare category
item is presented, attention is shifted away from the I di-
mension value nodes, because they are causing a mispre-
diction in favor of the common category. The activated
value nodes of the PR dimension thus receive the bulk of
the “blame” for the categorization error, and the associa-
tive weights to those nodes increase fastest. As in the orig-
inal ADIT, the model holds that people shift their attention
exclusively to the PR dimension and use that information
to predict the appearance of the rare category. With all
the attention flowing to a single dimension, association
weights become stronger between PR and rare than be-
tween PC (or I) and common, where attention is divided
between two dimensions.

In Experiment 2, the level of variability between trials
increases because, on each trial, the two primary predic-
tors, such as {I,PC} or {I,PR}, are of variable magnitude.
The irrelevant predictors are also of varying magnitude,
with the difference between the two types of predictors
always visible, but not always large. The model is affected
by this variability, because the predictive validity of each
dimension decreases and because the number of perfectly
valid values also decreases. For example, on any given
trial, the value of the I dimension may be greater than
that of the PC dimension. This makes the “large” value
nodes of I perfect predictors of the common category. As-
sociation weights to the (more valid) “large” nodes of PC
thus do not have as much of an opportunity to grow early
in training, on average, as they do in Experiment 1. Sim-
ilarly, the presence of activity in the PR dimension nodes
(due to a random PR value on some given trial) decreases
the validity of the “moderate” PR value nodes, so that
they are no longer perfect predictors of the rare category.
With this situationholding,attention tends to shift less be-
tween dimensions than in Experiment 1, due to less early
learning, and tends to shift more within dimensions, due
to a distribution of validity among the dimension values.

In Experiment 3, the levelof variabilityfrom trial to trial
is even higher. On any given trial, any one dimension may
have the largest value, drawing the most initial attention.
For example, when a rare category stimulus is presented,
it is possible that the PRo predictor (which signals the
“other” rare category) may have a large value. Because
association weights do not develop instantly, the spurious
predictors are often magnets for attention, since they do

not mispredict the category label. Attention is, on average,
distributed over value nodes on many different dimen-
sions, which means that early learning does not produce
strong biases in attention.Without early associations be-
tween {I,PC} and the common category, I is not ignored
when {I,PR} appears, and so there is no asymmetry be-
tween PC and PR. The preference for the common cate-
gory is still far less than the base rates alone would predict,
however, and thus represents a form of base rate neglect.

Conclusions
These experiments showed that (1) the inverse base rate

effect occurs even when stimulus dimensions vary con-
tinuously, (2) the effect is significantly weakened when
categorization is made probabilistic instead of determin-
istic, and (3) these results are consistent with the base
rates affecting the nature of the category representations
that subjects form, by virtue of the shifting of attention
among stimulus features during learning. The existence
of attention shifts has been confirmed in a number of re-
cent studies (e.g., Kruschke, 1996;Kruschke & Johansen,
1999; Lewandowsky, Kalish, & Griff iths, 2000), but, in
all prior cases, attention was seen to shift only between
stimulus dimensions. Corner allows attention to shift
within a dimension, and simulation modeling confirmed
that these shifts occurred in these experiments.

Shifts of attention during learning are apparently use-
ful, because they increase the speed with which new cat-
egories can be acquired (Kruschke & Johansen, 1999).
However, as a consequence of attention shifts, people do
not learn to be optimal classifiers—instead, people learn
to ignore some information that might be relevant and to
attend to other information that might be misleading.
When attention shifts within a stimulus dimension, peo-
ple are led to accentuate the distinctive attributes of the
stimulus. A stimulus that is a bit larger than average is
seen as very large, one that is redder than average is seen
as very red, and so on. Goldstone (1988) showed that bi-
ases such as these can occur spontaneously: Subjects in
his experiment accentuated the redness of a stimulus in
one context and accentuated the orangeness of the same
stimulus in a different context. Systematic biases of this
sort are also consistent with the performance of experts.
For example, the height of an average tree is believed to
be greater than it really is (Medin, Lynch, Coley, & Atran,
1997), perhaps because height makes trees distinctive
from bushes. Firefighters devalue the role of wind in dri-
ving back burns (Lewandowsky & Kirsner, 2000), per-
haps because they are generally lit in light winds, making
them distinctive from wind-driven wild fires. Models of
attentionhave focused on dimensional attention,whereas
these phenomena appear to require attention shifts within
a dimension.

Distinguishing intradimensional shifts from interdi-
mensional shifts of attention is not a straightforward mat-
ter, however. If interdimensional shifts are made on an
item-specific basis, the two very different psychological
processes may produce very similar outcomes. For exam-
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ple, firefighters might shift their attentionaway from wind
to other variables (such as the slope of the terrain) for
some fires, but not others. Exemplar-specific dimensional
attention has proved to be a useful concept in explaining
biases in category learning experiments (Kruschke, in
press); distinguishing this from intradimensional shifts
may prove difficult. Indeed, even in the present set of ex-
periments, ADIT* and Corner* make very similar pre-
dictions. Dunn and Kalish (2000) reported an analysis of
these models that revealed that intradimensional and in-
terdimensional shifts can mimic each other over a wide
range of parameter values.

Complex models, even when formally specified, can
be difficult to tell apart in practice. Despite the difficulty
in distinguishing dimensional attention from attention to
features, the nested model fitting approach used here was
able to show that both types of attention shifts appear to
be working simultaneously in these experiments.

REFERENCES

Ahn, W. K., & Medin, D. L. (1992). A two-stage model of category
construction. Cognitive Science, 16, 81-121.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S.
(1977). Distinctive features, categorical perception, and probability
learning: Some applications of a neural model. Psychological Re-
view, 84, 413-451.

Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the domi-
nance of unidimensional rules in unsupervised categorization. Per-
ception & Psychophysics, 61, 1178-1199.

Dunn, J., & Kalish, M. L. (2000, August). Comparing models of cat-
egorization using signed difference analysis. Paper presented at the
31st Annual Meeting of the Society for Mathematical Psychology,
Kingston, Ontario, Canada.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category
learning: An adaptive network model. Journal of Experimental Psy-
chology: General, 117, 227-247.

Goldstone, R. L. (1988). Perceptual learning. Annual Review of Psy-
chology, 49, 585-612.

Goldstone, R. L. (1993). Positively and negatively defined concepts
(Research Rep. 88). Cognitive Science Program, Indiana University,
Bloomington.

Kalish, M. L., & Kruschke, J. K. (2000). The role of attention shifts
in the categorization of continuous dimensioned stimuli. Psycholog-
ical Research, 64, 105-116.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist
model of category learning. Psychological Review, 99, 22-44.

Kruschke, J. K. (1996). Base rates in category learning. Journal of Ex-
perimental Psychology: Learning, Memory, & Cognition, 22, 3-26.

Kruschke, J. K. (in press). Toward a unified model of category learn-
ing. Journal of Mathematical Psychology.

Kruschke, J. K., & Johansen, M. K. (1999). A model of probabilistic
category learning. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 25, 1083-1119.

Lewandowsky, S. (1995). Base-rate neglect in ALCOVE: A critical
reevaluation. Psychological Review, 102, 185-191.

Lewandowsky, S., Kalish, M. L., & Griffiths, T. L. (2000). Com-
peting strategies in categorization: Expediency and resistance to
knowledge restructuring. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 26, 1666-1684.

Lewandowsky, S., & Kirsner, K. (2000). Knowledge partitioning:
Context-dependent use of expertise. Memory & Cognition, 28, 295-
305.

Luce, R. D. (1963). Detection and recognition. In R. D. Luce, P. R.
Bush, & E. Galanter (Eds.), Handbook of mathematical psychology
(pp. 103-189). New York: Wiley.

Medin, D. L., Altom, M. W., Edelson, S. M., & Freko, D. (1982).
Correlated symptoms and simulated medical classification. Journal
of Experimental Psychology: Learning, Memory, & Cognition, 37-
50.

Medin, D. L., & Edelson, S. M. (1988). Problem structure and the use
of base-rate information from experience. Journal of Experimental
Psychology: General, 117, 68-85.

Medin, D. L., Lynch, E. B., Coley, J. D., & Atran, S. (1997). Cate-
gorization and reasoning among tree experts: Do all roads lead to
Rome? Cognitive Psychology, 32, 49-96.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classifi-
cation learning. Psychological Review, 85, 207-238.

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Fam-
ily resemblance, conceptual cohesiveness, and category construction.
Cognitive Psychology, 19, 242-279.

Nosofsky, R. M. (1986). Attention, similarity and the identification–
categorization relationship. Journal of Experimental Psychology:
General, 115, 39-57.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. (1992). Combin-
ing exemplar-based category representations and connectionist learn-
ing rules. Journal of Experimental Psychology: Learning, Memory,
& Cognition, 18, 211-233.

Shanks, D. R. (1991). A connectionist account of base-rate biases in
categorization. Connection Science, 3, 143-162.

(Manuscript received April 27, 2000;
revision accepted for publication November 2, 2000.)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [7200.000 7200.000]
>> setpagedevice


