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Abstract

Information changes as it is passed from person to person, with this process of cultural trans-

mission allowing the minds of individuals to shape the information that they transmit. We present

mathematical models of cultural transmission which predict that the amount of information passed

from person to person should affect the rate at which that information changes. We tested this

prediction using a function-learning task, in which people learn a functional relationship between

two variables by observing the values of those variables. We varied the total number of observa-

tions and the number of those observations that take unique values. We found an effect of the

number of observations, with functions transmitted using fewer observations changing form more

quickly. We did not find an effect of the number of unique observations, suggesting that noise in

perception or memory may have affected learning.
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An apocryphal story from World War I tells of a commander who conveyed an urgent

message to his general by having each man speak it to his neighbor in the trench: “Send

reinforcements. We are going to advance.” The general was confused to receive the

request that finally reached his ears: “Send three and sixpence. We are going to a dance.”

Information changes as it is passed from person to person, whether it is transmitted as a

spoken message or by one person learning by observing the behavior of another. This

process of cultural transmission provides the foundation for much of human knowledge:

Most of the things we know we learn from other people, rather than by direct interaction
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with our physical environment. As a consequence, understanding the factors that affect

cultural transmission is important not just for preventing errors in the chain of command,

but for understanding how the knowledge maintained by human societies changes over

time.

Two basic questions about cultural transmission concern its effects and it speed: how

it changes the information being transmitted and how quickly this process takes place.

The first question is relevant to understanding how cultural objects such as languages,

religious concepts, and social conventions are formed. Anthropologists have argued that

since cultural transmission depends on cognitive processes such as learning and memory,

we should expect these cultural objects to come to reflect the structure of the human

minds that are involved in transmitting them (Atran, 2001; Boyer, 1998; Sperber, 1996).

Support for this hypothesis comes from recent theoretical analyses showing that transmis-

sion of information along a sequence of Bayesian agents changes the information into a

form that is consistent with the inductive biases of those agents (Griffiths & Kalish,

2007; Kirby, Dowman, & Griffiths, 2007). Empirical results have borne out the predic-

tions of this account, showing that as languages and concepts are transmitted along a

sequence of human learners they take forms that are easier to learn (Griffiths, Christian,

& Kalish, 2008; Kalish, Griffiths, & Lewandowsky, 2007; Kirby, Cornish, & Smith,

2008; Reali & Griffiths, 2009).

The second question, how quickly cultural transmission changes the information being

transmitted, has been explored less extensively. This question has both practical and theo-

retical implications. On the practical side, identifying the factors that determine how

quickly a message changes when it is passed from person to person has the potential to

decrease misunderstandings of the kind experienced by the World War I general. On the

theoretical side, knowing how quickly we expect languages and concepts to change over

time would provide us with tools for answering questions such as whether enough time

has passed for languages to have lost the influence of a common ancestor (Rafferty,

Griffiths, & Klein, 2009) or how long ago two cultures diverged (Gray & Atkinson,

2003; Reali & Griffiths, 2010; Swadesh, 1952).

In this article, we analyze the impact of one factor that influences the rate at which

cultural transmission has an effect: the amount of information transmitted between agents.

We begin with a mathematical analysis of the simple case of transmission of a category

defined on a single dimension. We then use a simulation to extend this analysis to the

more complex case of transmission of a function, and we present an experiment exploring

the predictions produced by this analysis.

2. Mathematical analysis of convergence rates

The Bayesian framework that has previously been used to analyze the consequences of

cultural transmission can also be used to analyze the rate at which it converges to equilib-

rium. Assume that the information being transmitted between agents concerns a category

defined along a single perceptual dimension. Although we focus on this case for the sake
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of simplicity, there are real instances of cultural transmission that take this form, such as

estimating the value of a specific formant in a phoneme. Each agent sees m samples

x1; x2; . . .; xm from a Gaussian distribution generated by the previous agent and seeks to

estimate l, the mean of the distribution. This is done by computing a posterior distribu-

tion over values of l based on the observations and inductive biases expressed in a prior
distribution. We will assume that the variance of the distribution of the xi, r2X , is known,

and that all agents have the same prior distribution on l, with mean l0 and variance r20.
Under these assumptions, standard results from Bayesian statistics can be used to show

that the posterior distribution on l inferred by agent n after observing the sample

produced by agent n�1 will be Gaussian with mean ln and variance r2n given by the

following:

ln ¼
�xn�1=r2X þ l0=r

2
0

m=r2X þ 1=r20
ð1Þ

r2n ¼
1

m=r2X þ 1=r20
; ð2Þ

where �xn�1 is the mean of the sample produced by agent n � 1 (for details, see Gelman,

Carlin, Stern, & Rubin, 1995). To return to the example of estimating the value of a for-

mant in a phoneme, this indicates that the estimate should linearly interpolate between

the mean of the prior (l0) and the average of the observed values (�sn�1), assigning each a

weight inversely proportional to its variance. As m increases, the variance of the posterior

decreases—the sample provides more information about the value of l.1

We can turn this into a model of cultural transmission by indicating how each agent

generates the data seen by the next agent. If agent n generates m observations by sam-

pling a value of l from this distibution and then sampling the observations from the

resulting Gaussian, the mean of these observations �xn is drawn from a Gaussian with

mean ln and variance r2X=mþ r2n. Using the results presented in Griffiths and Kalish

(2007), this process defines a Markov chain that will converge to a stationary distribution

that is also a Gaussian, with the mean of the observations �xn approaching a distribution

with mean l0 and variance r2X=mþ r20 as n approaches infinity. In the case of estimating

the value of a formant, this indicates that over time the distribution of the formant values

produced by the agents will converge to a form that reflects their prior, as indicated by

l0 and r20.
These results, together with the properties of Gaussian distributions, can be used to

evaluate the distribution of the mean of the observations generated by the agent n, �xn,
conditioned on the mean of the sample used to initialize the sequence, �x0. In the Appen-

dix, we show that this distribution is Gaussian with mean l0 þ cn�x0 and variance

ðr2X=m þ r20Þð1� c2nÞ, where c ¼ 1=ð1þ r2X
mr2

0

Þ. The mean and variance of �xn thus con-

verge geometrically to the mean and variance of the stationary distribution as n increases.

The rate of convergence is set by the constant c, being faster for smaller values of c. The
value of c is determined by the ratio of r2X to mr20, being small when this ratio is large.
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Increasing the sample size, m, increases c, and thus slows the rate of convergence. In

other words, as the amount of information transmitted between agents increases, the rate

at which cultural transmission changes that information decreases.

3. Testing the predictions with a function-learning task

The analysis presented in the previous section provides clear mathematical results, but

it assumes a situation that is simpler than the tasks that have previously been used to test

predictions about cultural transmission. We chose to conduct an empirical test of the pre-

diction that the amount of information passed between people should determine the rate

at which cultural transmission converges to an equilibrium using a function-learning task,

based on previous research that has established that this is a case in which people have

strong inductive biases that influence iterated learning (Kalish et al., 2007).

In function learning, each discrete trial involves presentation of a single magnitude of

the stimulus variable (x), and the learner attempts to infer the underlying function relating

y to x and produces an estimated magnitude ŷ in response. Each response is followed by

presentation of the correct value of y. Values of all variables are typically presented

in graphical form. Tests of interpolation and extrapolation with novel x values after numer-

ous (x, y) training trials confirm that people can infer continuous functions from these

discrete trials. Previous experiments in function learning suggest that people have an

inductive bias favoring linear functions with positive slope: Initial responses are consistent

with such functions (Busemeyer, Byun, DeLosh, & McDaniel, 1997), and they require

the least training to learn (Brehmer, 1971, 1974; Busemeyer et al., 1997). Accordingly,

Kalish, Lewandowsky, and Kruschke, (2004) showed that a model that included such a

bias could account for a variety of phenomena in human function learning. Finally, Kalish

et al. (2007) showed that simulating cultural transmission of functions in the laboratory

resulted in responses that converged on a linear function (with positive slope in 28 of 32

cases) irrespective of the information that was presented to the first generation.

The predictions for this case are similar to those seen in the mathematical analysis pre-

sented in the previous section. In general, as more information is passed from one person

to another the rate of convergence decreases. Fig. 1 provides an example, produced from

a simulation of a more complex Bayesian model described in detail in the Appendix.

Increasing the amount of information each Bayesian agent provides to the next (again,

expressed in terms of the variance of the posterior distribution) slows down convergence

to the solution favored by the prior—in this case a linear function with a positive slope.

However, learning functions introduces a factor that was not present in the simple one-

dimensional case presented in the previous section: The amount of information a sample

provides now depends both on the number of observations and the range of those obser-

vations.2 As the range increases, the sample provides more information about the slope of

the function. Intuitively, this is why it is a good idea to try to sample a wide range of

values for the independent variable when conducting regression analyses. Since increasing

the number of observations of x is likely to increase the range that those observations
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cover, the number of unique observations—that is, types rather than tokens—is also

related to the rate of convergence.

Our experiment had three conditions, corresponding to the three situations illustrated

in Fig. 1. In all conditions, participants in the first generation were trained on a negative
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Fig. 1. Cultural transmission of linear functions by Bayesian agents. (a) Each panel shows the values of x and

y for cultural transmission along one chain of agents. Each column shows the results of cultural transmission

for one iteration, with the leftmost column showing the data provided to the first agent. Each agent observed

data, computed a posterior distribution, sampled a hypothesized linear function from that distribution, and then

generated the data provided to the next learner (see the Appendix for details). The rows show this process in

three different conditions. The first row shows the 4 9 1 condition, where only four datapoints were observed

or generated. The second row shows the 4 9 10 condition, where 40 datapoints were observed but these were

generated by replicating four datapoints ten times (jitter is added to this plot to distinguish the points). The

third row shows the 40 9 1 condition, where 40 unique datapoints were observed and generated. In each case,

hypotheses converge on a linear function with positive slope, consistent with the inductive bias assumed for

these Bayesian agents. However, the rate of convergence depends on the amount of information transmitted.

(b) The mean slopes (solid line) and 68% confidence interval (dotted lines) for regression lines through the

generated functions for 1,000 replications of the simulation presented in (a). The slope increases as a function

of generation, with the rate determined by the amount information transmitted. (c) The difference between the

4 9 10 condition and the 40 9 1 condition disappears if observations of x and y include noise.
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linear function, and subsequent generations of participants were trained on the responses

of their immediate predecessors. The only difference between conditions was the training

regime, which consisted of different combinations of the number of unique stimuli (types)

and replications of each stimulus (tokens). In the 4 9 1 condition, training consisted of a

single presentation of each of 4 unique stimuli. In the 4 9 10 condition, there were also

4 unique stimuli but each was presented 10 times. Finally, in the 40 9 1 condition, each

of 40 unique stimuli was presented once. Training within each condition continued across

generations until participants’ responses had either flipped to a positive linear function

(whereupon further changes are unlikely; Kalish et al., 2007) or a maximum of 11 gener-

ations had been trained within a condition.

As shown in the simulation results presented in Fig. 1, we expected the number of

observations provided to learners to affect the rate of convergence of cultural transmis-

sion, with participants in the 4 9 1 condition converging faster than either the 4 9 10

condition or the 40 9 1 condition. Fig. 1 (b) also shows that it is possible for the number

of unique observations to affect the rate of convergence, with a difference between the

4 9 10 and 40 9 1 conditions. However, this effect is weaker than the effect of the num-

ber of observations in two ways. First, the effect size is smaller, with the confidence

intervals on the slopes overlapping. Second, the effect disappears if the observations are

perceived with noise, since this effectively increases the range of the observations. Fig. 1

(c) shows that when x and y have noise associated with them (perhaps as a result of

errors in perception or memory), there is little difference in the rate of convergence

across conditions (see the Appendix for details). Consequently, whether we see an effect

of the number of unique observations may depend on whether people can identify those

observations as actually being unique.

3.1. Method

3.1.1. Participants
The participants were members of the campus community at the University of Western

Australia (N = 56) and University of Louisiana at Lafayette (N = 79). Participants

received remuneration ($10/h) or course credit for participation in the single experimental

session.

Participants were randomly assigned to one of three experimental conditions and to a

“family” within a condition (subject to the termination constraints below), with cultural

transmission taking place across the generations of the family. There were five families

in each condition, and participants were no longer added to a family after the 11th gener-

ation or after the responses of the latest participant clearly conformed to a positive linear

function (assessed by the slope of the test responses), whichever came first.

3.1.2. Stimuli and apparatus
A Windows computer running a Matlab program designed using the Psychophysics

Toolbox (Brainard, 1997; Pelli, 1997) was used to present stimuli and to record

responses.
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On each trial, a gray filled horizontal bar (approximately 2 cm high) was presented at

the top-left of the screen. The upper left corner of the bar was approximately 4 cm from

the top and 4 cm from the left of the edge of the screen, and the horizontal extent of the

bar indicated the magnitude (x) of the stimulus. No tick marks or scales were present.

The participant entered a response magnitude (ŷ) by clicking on a vertically oriented

slider, which consisted of a thin (0.8 cm) unfilled rectangle that abutted the right side of

the screen and was labeled “0” and “max,” respectively, at the bottom and top ends. No

other scale marks were present. The mouse was originally positioned to the left of the

center of the slider, and people indicated their response by clicking within the slider.

Upon clicking, a black horizontal bar appeared at that location within the slider and a

confirmation button (labeled “OK”) appeared to its left. Participants could adjust their

response repeatedly and clicked the “OK” button to proceed.

During the training phase, a response was immediately followed by feedback, which

consisted of the word “correct” printed within a frame connected to the slider with a line

at the vertical location that corresponded to the correct target value y. The feedback

remained visible for a minimum of 1.6 s, with the duration being extended in linear pro-

portion to the response error (i.e., the difference between the response magnitude and the

true magnitude) to encourage accurate responding.

3.1.3. Procedure
The experiment involved a training phase followed by a test phase. The stimuli used

in the training phase varied by condition: There were 4 unique stimuli in the 4 9 1 and

4 9 10 conditions (repeated 10 times in the latter) and 40 unique stimuli in the 40 9 1

condition. For learners who formed the first generation of any family, all unique stimuli

were randomly sampled from the set of stimulus magnitudes (x) in [1,100]. Target magni-

tudes (y) were assigned according to the negative linear function y = 100 � x, allowing
us to monitor the rate at which responses moved away from this function and toward a

positive linear function.

The test phase always involved 40 test trials, irrespective of condition. In the 4 9 1

and 4 9 10 conditions, the test phase involved all four unique training stimuli plus 36

new stimuli with x values sampled uniformly from [1,100]. In the 40 9 1 condition, 20

of the training stimuli were used as test stimuli, together with 20 new stimuli. Test stim-

uli were presented in random order.

For generations following the first, training stimuli were sampled from the test phase

responses of the participant in the previous generation of that family. For the 40 9 1 con-

dition, the training set for a given generation was simply the test set of the previous gen-

eration. For the other two conditions, the training set consisted of two of the test stimuli

that had x values drawn from the training set of the previous participant and two of the

test stimuli that had new x values. In all cases, the magnitude estimates ŷ provided during

the test phase by the previous participant became the new target values y.
The sequence of training trials consisted of a random permutation of all unique stimuli

and their replications (i.e., 4 9 1 = 4, 4 9 10 = 40, and 40 9 1 = 40 training trials).

Training trials were separated by a 1 s blank screen. Test trials were identical to training

T. L. Griffiths, S. Lewandowsky, M. L. Kalish / Cognitive Science 37 (2013) 959



trials, except that no feedback was presented after the response was entered. Participants

were informed about this change at the outset.

The experiment was preceded by four practice trials during which feedback was

presented. All practice trials involved the pairing (x = 50, y = 50) for all conditions. The

constant values prevented possible biasing toward any particular function relating x and y
during training.

4. Results and discussion

Owing to the brevity of training in the 4 9 1 condition, analysis focused on responses

from the test phase. Fig. 2 shows the responses for each participant in all three condi-

tions. For each condition, one row of panels corresponds to a family, whereas columns

correspond to generations. Thus, the participants in the left-most column all received

stimuli that were sampled—using the regime determined by the condition—from the

same negative linear function. All remaining participants in each condition were trained

on stimuli that were contingent upon the responses of the preceding generation.

Of greatest interest in Fig. 2 is the evolution of responses across intergenerational

transmission, from left to right across columns in each row. It is immediately apparent

that in the 4 9 10 condition (panel (b)) and in the 40 9 1 condition (panel (c)), there

were three families who failed to converge across 11 generations; that is, the last descen-

dant in each family continued to respond according to the negative linear function that

was used for the first generation. The remaining two families in each condition converged

after eight and four generations (40 9 1), and after seven and seven generations

(4 9 10). In striking contrast, all families converged in the 4 9 1 condition, namely after

ten, five, one, six, and three generations (panel (a)). The rapid switches in slope across

successive generations are consistent with the results of previous iterated learning experi-

ments using a function-learning task (Kalish et al., 2007) and are consistent with having

a multimodal prior distributon on functions rather than the smooth prior assumed in the

Bayesian linear regression model we used to motivate our experiment (Griffiths, Lucas,

Williams, & Kalish, 2009).

A summary of the data is provided in Fig. 3, which shows the cross-generational evo-

lution of average slopes (i.e., best-fitting slope estimates for each subject averaged across

generational peers in all families) in the three conditions.3 The figure makes two impor-

tant points. First, it clarifies that in all conditions there was movement away from the ini-

tial function to the positive linear alternative, consistent with the results of Kalish et al.

(2007). Second, the figure highlights that convergence was faster in the 4 9 1 condition

than in the other two, which in turn did not differ much from each other.

For statistical confirmation, we first fit a regression model to the data in Fig. 3 that had

separate slopes and intercepts for each condition. This model fit very well, R2 ¼ :937,
and the loss of fit was negligible when the slopes for the 4 9 10 and 40 9 1 conditions

were constrained to be equal, F(1,27) = .012, p > .10. When the slope for the 4 9 1

condition was also constrained to be identical, the further loss of fit was considerable,
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F(1,28) = 10.43, p < .005, confirming the obvious pattern in the figure and the faster

convergence of the 4 9 1 condition (slope 0.145) than the other two (joint slope 0.089).

We also performed a Bayesian analysis in which the point at which the slope switched

to a positive value was treated as a Poisson random variable with a different rate parame-

ter for each condition.4 We used a generic conjugate prior—an exponential distribution

with unit mean—to obtain posterior distributions on the rate of the Poisson that were

(a)

(b)

(c)

Fig. 2. Responses from each participant from the test phase in all three conditions. Each row of panels repre-

sents a family and each column a generation of participants. Intergenerational transmission ceased after 11

generations or once convergence to a positive function had occurred.
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Gamma(25,6), Gamma(48,6), Gamma(45,6), for the 4 9 1, 4 9 10, and 40 9 1 condi-

tions, respectively. This results in posterior probabilities of .995 and .992 that the rate

was higher in the 4 9 1 condition than the 4 9 10 and 40 9 1 conditions, and .582 that

the rate was higher in 4 9 10 than 40 9 1. The Bayesian analysis thus supports the same

conclusions as the regression model.

5. Conclusions

Mathematical analyses of cultural transmission by Bayesian agents predict that the rate

at which information is changed by cultural transmission is inversely related to the

amount of information that is transmitted. Our results partially bore out these predictions.

In confirmation of predictions, convergence to a function that reflected people’s inductive

biases was faster when the function was transmitted using fewer observations (the 4 9 1

condition). The number of unique observations within the sample (40 9 1 vs. 4 9 10)

did not have a statistically significant effect. These results are consistent with the conclu-

sion that the amount of information transmitted between learners affects the rate of con-

vergence of cultural transmission, but they reinforce the fact that the information

provided by a sample depends on how people perceive it.

The lack of the predicted effect of the number of unique observations is an interesting

finding that warrants further investigation. One possibility is that the sample size used in

our study was simply not large enough to find this effect. If so, our results suggest that

the effect of the number of unique observations must be weaker than the effect of sample

size, which is consistent with the predictions produced by the simple model considered in

the introduction (see Fig. 1 (b)). A second possibility is that human learners inserted

sufficient noise into the observations to mask the fact that the number of unique observa-

tions was small. If perceptual or memory error was sufficient to “jitter” these observations

into a sample that more closely resembled that seen in the 40 9 1 condition, we should

not expect to see a difference between the conditions. As shown in Fig. 1 (c), such noise

can remove the difference between the 4 9 10 and 40 9 1 conditions.
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Fig. 3. Evolution of average slopes of linear regressions fit to the test phase responses of each participant.
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Our results have implications for both practical and theoretical questions related to cul-

tural transmission. On the practical side, they illustrate how the amount of information

passed between agents plays a crucial role in the ultimate fidelity of transmission. Our

advice to the apocryphal World War I commander would be to tell his troops to repeat

the message several times (i.e., instantiate a 4 9 10 rather than 4 9 1 condition), thereby

increasing the probability that it would be successfully transmitted. On the theoretical

side, the relationship between sample size and rate of convergence has the potential to

deepen our understanding of which aspects of languages we might expect to change more

rapidly as they are passed from generation to generation, providing a link to analyses that

examine the relationship between the frequencies of linguistic constructions and the rate

at which those constructions change over time (e.g., Reali & Griffiths, 2010).
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Notes

1. The variance of the posterior is a direct proxy for the amount of information pro-

vided by the observations in the sense of Shannon (1948) since the differential

entropy of a Gaussian is logðr ffiffiffiffiffiffiffiffi
2pe

p Þ, a monotonic function of the variance r2.
2. More precisely, the variance of the posterior distribution on the slope depends on

the norm of the vector of values of x, as indicated in the Appendix.

3. For construction of this figure and the associated regression analysis, the final set

of responses for any family that converged on the positive linear function was used

in the computation of the mean for all subsequent generations up to the maximum

of 11.

4. Chains that never switched were treated as switching at the last iteration, which is

a conservative estimate for the purpose of this analysis.
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Appendix: Mathematical details

Convergence rate for transmission of the mean of a Gaussian

We can derive the distribution of �xn given �x0 by observing that �xn can be seen as a lin-

ear function of �xn�1, plus a new random variable �n drawn from a Gaussian. Without loss

of generality, we can assume that the mean of the prior on l is l0 ¼ 0 (if necessary, we

can subtract l0 from all �xn so that this assumption holds), so that ln is simply a multiple

of �xn�1. This means that we can write

�xn ¼ c�xn�1 þ �n ð3Þ

where c ¼ 1=ð1þ r2X
mr2

0

Þ and �n �Gaussianð0; r2X=m þ r2nÞ. If c = 1, this is just a Gaussian

random walk. If c < 1, it is a random walk with a tendency to shrink toward 0. We can

recursively apply Equation 1 to obtain a specification of �xn in terms of �x0 and a series of

random variables

�xn ¼ cn�x0 þ
Xn
j¼1

cðn�jÞ�j: ð4Þ

This makes it easy to evaluate the expectation of xn,

E½�xn� ¼ cn�x0 þ
Xn
j¼1

cðn�jÞE½�j� ð5Þ

¼ cn�x0 ð6Þ

and its variance,

var½�xn� ¼
Xn
j¼1

c2ðn�jÞvar½�j� ð7Þ

¼ ðr2X=mþ r2nÞ
Xðn�1Þ

j¼0

c2j ð8Þ

¼ ðr2X=mþ r2nÞ
1� c2n

1� c2
ð9Þ
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¼ ðr2X=mþ r20Þð1� c2nÞ; ð10Þ

where the fraction is the expression for an incomplete sum of a geometric series. Since all e
terms have Gaussian distributions, their sum has a Gaussian distribution. Thus, we have

�xnj�x0 �Gaussianðcnx0; ðr2X=mþ r20Þð1� c2nÞÞ ð11Þ

where c ¼ 1=ð1þ r2X
mr2

0

Þ. Allowing l0 to take values other than 0, we obtain the result

given in the article.

Function learning and Bayesian linear regression

The results shown in Fig. 1 were generated by simulating cultural transmission using

the Bayesian linear regression model presented by Kalish et al. (2007). We briefly repro-

duce the information about that model here.

Assume that the agent is presented with data d consisting of a set of n pairs ðxi; yiÞ,
and that the agent seeks to estimate a linear function of the form y ¼ b1xþ b0 þ �, where
e is Gaussian noise with variance r2Y . We can summarize both the data and the estimated

function using column vectors, x ¼ ½x1; x2; . . .; xn�T , y ¼ ½y1; y2; . . .; yn�T , and

b ¼ ½b1 b0�T . The prior used in Bayesian estimation is a distribution over the parameters

b, p(b). We take p(b) to be Gaussian with mean lb and covariance matrix r2bI2.
The posterior distribution is a distribution over b given x and y. Using our choice of

prior and the assumption of Gaussian noise in y, the posterior is Gaussian with covari-

ance matrix

Rpost ¼ 1

r2Y
XTXþ 1

r2b
I2

 !�1

; ð12Þ

and mean

lpost ¼ R�1
post

1

r2Y
XTyþ 1

r2b
lb

 !
: ð13Þ

This completes the specification of the model we used to simulate cultural transmission.

The analysis of cultural transmission by Bayesian agents given by Griffiths and Kalish

(2007) indicates that if we repeatedly sample a hypothesis from this posterior distribution

and then generate data by sampling from the corresponding likelihood function, over time

the hypotheses considered by the learners will converge to the prior distribution. To explore

how the amount of data seen by the learners influences the rate of convergence, we simu-

lated this process for three conditions, corresponding to the conditions used in our experi-

ment. In the 4 9 1 condition, four datapoints were sampled at each generation, while in the
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4 9 10 four datapoints were sampled, but then replicated 10 times to make a total of 40

datapoints, and in the 40 9 1 condition 40 unique datapoints were sampled. In each case, x
was chosen from a uniform distribution on [0,1]. For the first generation, y was set to 1 � x.
For subsequent generations, a value of b was sampled from the resulting posterior distribu-

tion and used to generate values of y for the new randomly drawn values of x, which were

then supplied as data to the next learner. This process was continued for a total of eleven

learners, producing the results shown in Fig. 1 (a) and (b). The likelihood and prior assumed

by the learners had r2Y ¼ 0:0025, r2b ¼ 0:01, and lb ¼ ½1 0�T , corresponding to a strong

prior favoring functions with a slope of 1 and an intercept of 0. The results shown in Fig. 1

(c) were produced by repeating this simulation but adding Gaussian noise with a mean of

zero and standard deviation of 0.2 to all x and y values.
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