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Evidence that learning rule-based (RB) and information-integration (II) category structures can be
dissociated across different experimental variables has been used to support the view that such learning
is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables,
the delay between response and feedback and the informativeness of feedback, which had previously
been shown to dissociate learning of the 2 types of category structure. Our aim was twofold: first, to
determine whether these dissociations meet the more stringent inferential criteria of state-trace analysis
and, second, to determine the conditions under which they can be observed. Experiment 1 confirmed that
a mask-filled feedback delay dissociated the learning of RB and II category structures with minimally
informative (yes/no) feedback and also met the state-trace criteria for the involvement of multiple latent
variables. Experiment 2 showed that this effect is eliminated when a less similar, fixed pattern mask is
presented in the interval between response and feedback. Experiment 3 showed that the selective effect
of feedback delay on II learning is reduced with fully informative feedback (in which the correct category
is specified after an incorrect response) and that feedback type did not dissociate RB and II learning.
Experiment 4 extended the results of Experiment 2, showing that the differential effect of feedback delay
is eliminated when a fixed pattern mask is used. These results pose important challenges to models of
category learning, and we discuss their implications for multiple learning system models and their
alternatives.
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Perceptual categorization refers to the capacity to organize dif-
ferent perceptual objects into groups. Many different models have
been proposed to account for this capacity (Pothos & Wills, 2011).
Some of these, such as the generalized context model (Nosofsky,
1986, 2011) and the prototype model (Minda & Smith, 2002,
2011), explore the extent to which a single representational system
or strategy can account for human categorization. Other hybrid
models examine the ways in which different processes or strategies
are brought to bear on different categorization problems (cf.
Kruschke, 2011). One of these is the COVIS model proposed by
Ashby, Maddox, and colleagues (Ashby, Alfonso-Reese, Turken,
& Waldron, 1998; Ashby & O’Brien, 2005; Ashby, Paul, &

Maddox, 2011). This model draws a strong distinction between
two different ways in which categorization tasks can be solved and
associates each of these with a distinct neurobiological system in
the brain. According to COVIS, there exists a verbal system that
attempts to solve categorization tasks by generating and testing
simple verbalizable hypotheses, or rules, and depends on structures
in the anterior cingulate, the prefrontal cortices, the medial tem-
poral lobe, and the head of the caudate nucleus (Ashby & Ell,
2001; Ashby & Spiering, 2004; Nomura et al., 2007; Nomura &
Reber, 2008). In addition, there also exists a procedural system that
solves categorization tasks by learning to associate a response with
regions of perceptual space based on reinforcement (Ashby et al.,
2011) and depends on neural structures in the tail of the caudate
nucleus (Ashby et al., 1998; Nomura & Reber, 2008).

A feature of the COVIS model is that the verbal and procedural
systems compete to determine the response to any one categori-
zation judgment. Which system dominates is partly determined by
their relative past success in generating the correct response.
According to the model, despite an initial bias in favor of the
verbal system, the procedural system will, in time, come to deter-
mine the response if the categorization task cannot be solved using
a simple verbalizable rule. This has led to an extensive series of
studies that have compared the learning of rule-based (RB) and
information-integration (II) category structures. RB structures de-
fine category membership according to values on salient stimulus
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dimensions. The verbal system is able to learn to categorize such
structures by identifying the relevant dimensions and discovering
the appropriate rule (e.g., if the size of a circle is greater than x and
the orientation of a line is greater than y, then the stimulus is a
member of category A). In contrast, II structures define category
membership according to the conjoint values on two or more
dimensions using rules that are not easily verbalizable. Conse-
quently, such structures cannot be learnt by the verbal system,
which must eventually yield control of the response to the proce-
dural system.

Given that categorization of RB and II structures depends pri-
marily on the verbal and procedural systems, respectively, it is
possible to test two kinds of prediction made by COVIS. The first
is the fundamental claim that there are two distinct systems un-
derlying RB and II learning. Although the definition of what
constitutes a system is not well settled, it is generally agreed that
a minimal requirement is that systems be functionally distinct
(Sherry & Schacter, 1987). Because the verbal and procedural
systems operate on different principles, it should be possible to
find variables that differentially affect their functions. This has
most often taken the form of finding variables that dissociate RB
and II learning. Variables that selectively affect the verbal system
should affect RB learning but have little or no effect on II learning.
Similarly, variables that selectively affect the procedural system
should affect II learning but have little or no effect on RB learning.
The second kind of prediction concerns the properties of the verbal
and procedural systems proposed by COVIS. As well as predicting
that RB and II learning can be dissociated, COVIS also predicts the
kinds of variables that produce this result and the conditions under
which it occurs. Tests of this prediction have tended to be inves-
tigated hand-in-hand with the attempts to dissociate RB and II
learning. For example, because the procedural system learns an
association between a region of perceptual space and an overt
response, if the nature of this response is changed, performance
should suffer. Consistent with this prediction, Ashby, Ell, and
Waldron (2003) found that a reassignment of the response buttons
associated with each of two categories impaired the categorization
of II structures following learning but had little effect on the
categorization of RB structures. Conversely, because the verbal
system depends upon working memory, adding a cognitive load or
limiting the time available for processing feedback should selec-
tively impair this system. Consistent with these predictions, Mad-
dox, Ashby, Ing, and Pickering (2004) found that reducing the time
available to process feedback on each trial affected RB learning
but had little effect on II learning. Similarly, Zeithamova and
Maddox (2006) found that the addition of a working memory load
impaired RB learning but had little effect on II learning.

Our aim in the present article is to examine the two kinds of
prediction made by COVIS in relation to two reported dissocia-
tions involving the selective effects of feedback delay and feed-
back type on learning II structures. COVIS predicts that a delay of
even a few seconds between the categorization response and
presentation of feedback should impair learning by the procedural
system. This prediction is derived from the neurobiological mech-
anism that is the basis of this system. This mechanism depends
upon local reward-mediated learning within the tail of the caudate
nucleus and requires that the pattern of activation associated with
the response be maintained until the occurrence of a dopamine-
mediated reward signal (Maddox, Ashby, & Bohil, 2003). How-

ever, the morphology of cells in the tail of the caudate nucleus
allows activation to be maintained for only a few seconds. If
reward is delayed beyond this, learning will be impaired. Maddox
et al. (2003) tested this prediction by comparing RB and II learning
with immediate feedback and with feedback following a delay of
either 2.5 s, 5 s, or 10 s. They found that when feedback was
delayed, essentially no II learning occurred.

COVIS also predicts that the type of feedback should differen-
tially affect RB and II learning. Feedback may either be minimal,
when the participant is informed only if he or she is correct or
incorrect, or it may be full, when the participant is informed of the
correct response if his or her response is incorrect. According to
COVIS, RB learning benefits from full feedback because the
verbal system uses this additional information to generate and test
more appropriate rules. In contrast, because the procedural system
relies on local reward-based learning, it is indifferent to the type of
feedback. While this may suggest that II learning should also be
unaffected, Maddox, Love, Glass, and Filoteo (2008) argued in-
stead that full feedback impairs II learning because this type of
feedback encourages the verbal system to maintain its control of
the response, despite the fact that it is unable to learn the II
structure.

COVIS is supported in two ways by the reported effects of
feedback delay and feedback type. First, the fact that they differ-
entially affect RB and II learning in itself supports the concept of
multiple category learning systems. Second, the nature of these
differential effects flows directly from the properties that COVIS
attributes to each of the two systems. Despite this, we believe that
there are good reasons to question both conclusions (Newell,
Dunn, & Kalish, 2011). In the section to follow, we present two
arguments. First, we show that functional dissociations cannot, in
themselves, support the inference of multiple latent variables and
illustrate this point in relation to the selective effect of changing
response assignments on II learning (Ashby et al., 2003; Nosofsky,
Stanton, & Zaki, 2005). We propose instead that state-trace anal-
ysis provides the appropriate analytic tool to examine these effects
(Newell & Dunn, 2008). Second, we show that even when disso-
ciations support the inference of multiple latent variables, consis-
tent with COVIS, this pattern may depend on features of the task
that, according to COVIS, should be irrelevant. We illustrate this
point in relation to the selective effect of feedback disruption on
RB learning (Maddox et al., 2004; Stanton & Nosofsky, 2007). On
the basis of these arguments, we conducted four experiments
examining whether variations in feedback delay and feedback type
dissociate RB and II learning according to the more stringent
criteria of state-trace analysis and, if they do, whether this depends
on features that, according to COVIS, should be irrelevant.

The Limitation of Functional Dissociations

Functional dissociations provide only weak evidence in favor of
multiple processing systems since it is possible to observe a
dissociation (including a double dissociation) when performance
on both tasks (in the present case, RB and II learning) depend upon
a single intervening process or latent variable (Dunn & Kirsner,
1988; Newell & Dunn, 2008). This is illustrated in Figure 1 in
relation to the effect of response assignment on categorization
performance for RB and II structures (Ashby et al., 2003; Nosof-
sky et al., 2005). Figure 1a shows the results found by Nosofsky et
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al. (2005) in their Experiment 1, which replicated the results found
earlier by Ashby et al. (2003).1 In the study by Nosofsky et al.,
participants learned to classify either RB or II category structures
by pressing one of two designated keys on a computer keyboard.
For the RB structure, training consisted of eight blocks of 50 trials
(400 trials total), while for the II structure (called the Diagonal
structure in the study), training consisted of 10 blocks of trials (500
trials total). Following training, participants were instructed that
the response assignments they had learned were now reversed.
They then completed two blocks of trials under this regimen.

As can be seen from Figure 1a, the change in response assign-
ment yielded a single dissociation—performance on the II struc-
ture was impaired to a greater extent than performance on the RB
structure. This outcome is consistent with COVIS, which proposes
that the procedural system forms an association between regions of
perceptual space and a specific response. Changing the nature of
the response assigned to each region of space, as in the transfer
phase, therefore impairs the function of this system. In contrast, the
verbal system is relatively unaffected by the response switch
because this system has learned an abstract rule that does not
depend upon specific response assignments.

Although COVIS successfully predicts a greater effect of re-
sponse reassignment on II categorization, the data do not support
the inference that more than one latent variable, process, or pro-
cessing system is involved. This is demonstrated in Figure 1b,
which plots the data from Figure 1a in the form of a state-trace
plot (Bamber, 1979). This is a parametric plot of performance on
one outcome measure (level of II learning) as a function of
performance on the other outcome measure (level of RB learning)
across the set of experimental conditions. The state-trace plot

provides a means of determining if changes in the outcomes,
despite evidence of functional dissociations, are nevertheless con-
sistent with a single latent variable (Newell & Dunn, 2008). This
would be the case if learning of both RB and II structures de-
pended upon the same kind of mechanism and differed only in how
quickly they reached asymptote. This idea is captured in state-trace
analysis by supposing that categorization performance for RB and
II structures can be considered as two different but unknown
monotonic functions of a single latent variable (such as amount of
training). If so, the data points corresponding to the different
experimental conditions will necessarily fall on a monotonically
increasing curve in the state-trace plot (Bamber, 1979). This is
called a one-dimensional state-trace. On the other hand, if the
learning of RB and II category structures depends upon different
latent variables or processes or processing systems and these are
differentially affected by the experimental variables (training
blocks and change in response assignment in the present case),
then the data will not, in general, fall on a single monotonic curve
in state-trace space. This is called a two-dimensional state-trace. It
is this pattern, rather than the occurrence of dissociations, that
provides decisive evidence for multiple latent variables, processes,
or systems (Newell & Dunn, 2008).

Figure 1b shows that a functional dissociation can be consistent
with a one-dimensional state-trace. The filled data points show
average RB and II performance in each block of the preswitch

1 We are grateful to Roger Stanton for providing the raw data from this
experiment as well as those for Experiments 1 and 2 from Stanton and
Nosofsky (2007).

Figure 1. Data from Nosofsky, Stanton, and Zaki (2005, Experiment 1). a: Mean proportion correct on RB and
II category structures for each block of trials in the learning or preswitch phase (Blocks 1–8 for the RB structure
and Blocks 1–10 for the II structure) and in the postswitch or transfer phase (T1 and T2). In the control condition,
the same response assignment was maintained across both phases. In the button switch condition, the response
assignment was switched between learning and transfer phases. Error bars indicate standard errors. b: The same
data in the form of a state-trace plot. Filled symbols correspond to performance in the preswitch phase. Unfilled
symbols correspond to performance in the postswitch phase. Error bars indicate standard errors. II � informa-
tion-integration; RB � rule-based. Panel a adapted from “Procedural Interference in Perceptual Classification:
Implicit Learning or Cognitive Complexity?”, by R. M. Nosofsky, R. D. Stanton, and S. R. Zaki, 2005, Memory
& Cognition, 33, p. 1261. Copyright 2005 by the Psychonomic Society.
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training phase. Here and in following figures, points in the state-
trace plot are colored gray to suggest that they reflect both RB and
II category structures that are identified by black and white sym-
bols, respectively, in Figure 1a. It is apparent that the data from the
preswitch phase are well described by a single monotonically
increasing curve, which is only to be expected since the two groups
(control and button switch) are tested under identical conditions
during this phase. The unfilled data points show average RB and
II performance in each block of the postswitch transfer phase.
Crucially, these points show little evidence of departing from the
monotonic curve that describes the training data and therefore
provide little evidence for a two-dimensional state-trace. This
conclusion is supported by the statistical analysis that we describe
in the following section. The data are therefore consistent with
response reassignment impairing categorization performance for
both RB and II structures in essentially the same way. The fact that
the effect of switching response buttons is more apparent for the II
structure is due to the nature of the monotonic relationship be-
tween RB and II performance across training. Although the data
dissociate RB and II learning, there is no evidence of the involve-
ment of distinct category learning systems. This is also consistent
with the conclusion reached by Nosofsky et al. (2005) that the
observed dissociation was due to how much was learned about
each category structure rather than to the ways in which the
structures were learned.

State-Trace Analysis

State-trace analysis provides insights that more traditional anal-
yses, such as analysis of variance (ANOVA), do not. In the
experiments to follow, we used state-trace analysis to determine
whether the effects of pairs of variables on learning RB and II
category structures lead to a one-dimensional or two-dimensional
state-trace. This, in turn, required the application of a tailored
statistical procedure first described by Newell, Dunn, and Kalish
(2010). The aim of this section is to briefly describe this procedure
and to contrast it with ANOVA.

As noted above, a functional dissociation does not necessarily
imply a two-dimensional state-trace plot. Dissociations are often
identified by examining relevant interaction terms using ANOVA,
and this is precisely what Nosofsky et al. (2005) did in their
experiment. The claim that there was a selective effect of switch-
ing responses on II learning was supported by a significant inter-
action between blocks (preswitch vs. postswitch), condition (con-
trol vs. button switch), and category structure (RB vs. II).
However, such interactions are neither necessary nor sufficient for
a two-dimensional state-trace (Loftus, Oberg, & Dillon, 2004).
This is because the aims of the two procedures are different.
ANOVA is concerned with detecting departures from a particular
model of effects, called the general linear model, while state-trace
analysis is concerned with detecting departures from a monoton-
ically ordered configuration of points in outcome space. In the
application of ANOVA to the present data, category structure is
treated as an independent variable with two levels (e.g., RB vs. II),
which, like the remaining independent variables, is assumed to be
linearly related to a single dependent variable (categorization per-
formance). In the present application of state-trace analysis, the

two category structures define two different dependent variables
that need not be linearly related to the other independent variables.

Although ANOVA and state-trace analysis make different as-
sumptions and have different goals, they are not totally unrelated.
In the Appendix, we show that if ANOVA reveals one of several
patterns of effects, then the corresponding state-trace must be
one-dimensional. However, the converse is not true—even if
ANOVA reveals significant interactions, the corresponding state-
trace may still be one-dimensional. This is the case for the data in
Figure 1b. Even though Nosofsky et al. (2005) found a significant
three-way interaction, the state-trace is still one-dimensional, as
determined by the procedure introduced by Newell et al. (2010)
and outlined below.

The statistical procedure introduced by Newell et al. (2010)
consists of two parts: a model fitting part and a model testing part.
In the model fitting part, two kinds of model are fit to the observed
data. The first is an order-restricted two-dimensional model, which
allows the state-trace to be two-dimensional (i.e., nonmonotonic)
but specifies a prior ordering of some of the data points. This
model is fit to exclude departures from monotonicity that reflect
unexpected experimental or measurement error (Prince, Brown, &
Heathcote, 2012). For example, in Figure 1, the two-dimensional
model may impose the restriction that performance on both RB
and II tasks should not decrease across training blocks. This means
that random departures from this expectation will not counted as
evidence against monotonicity. The fit of this model is then com-
pared to the fit of an order-restricted one-dimensional model that
is nested within the two-dimensional model with the additional
constraint that the data points must be ordered in the same way on
both dependent variables.2 The greater the difference in the good-
ness of fit between the two models (measured by the difference in
the G2 statistic, �G2), the greater is the evidence for a two-
dimensional state-trace. The assessment of this evidence is formal-
ized in the model testing part where the empirical distribution of
�G2 is estimated using a Monte Carlo simulation based on the
parametric bootstrap procedure developed by Wagenmakers, Rat-
cliff, Gomez, and Iverson (2004). At each iteration of the proce-
dure, a bootstrap sample of the data is fit by the order-restricted
one-dimensional model, which is used to generate a new sample
that is fit by both the (order-restricted) one-dimensional and two-
dimensional models. The �G2 obtained from this comparison can
be considered as a sample from the unknown empirical distribution
of �G2 under the hypothesis that the one-dimensional model is
true. Using this distribution, we tested the hypothesis that the value
of �G2 obtained from the original data is also a sample from this
distribution (i.e., that the data form a one-dimensional state-trace)
by calculating a p value in the normal way. We typically based our
estimate on 10,000 samples.

We applied the above statistical analysis to a subset of the data
shown in Figure 1 consisting of the last two preswitch training
blocks (Blocks 7–8 for the RB structure and Blocks 9–10 for the
II structure) and the following two postswitch transfer blocks.

2 We also considered a third model called the order-restricted one-
dimensional nonoverlap model. This is used to exclude the possibility that
the data trivially satisfy monotonicity due to the fact that the means of the
conditions fail to overlap in state-trace space. This was not a factor in the
present series of experiments, and so we have not discussed it further.
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Although ANOVA revealed a significant interaction between con-
dition (control vs. button switch) and category structure (RB vs.
II), we were unable to reject the one-dimensional model (�G2 �
2.16, p � .23). This illustrates the point that a functional dissoci-
ation supported by relevant significant interaction term does not
guarantee a two-dimensional state-trace.

Disappearing Dissociations

COVIS predicts the conditions under which categorization per-
formance depends on the involvement of multiple category learn-
ing systems. State-trace analysis can be used to either confirm or
disconfirm these predictions. Figure 2 shows the results of two
experiments conducted by Stanton and Nosofsky (2007) that in-
vestigated the effect of disrupting the processing of feedback on
RB and II learning. According to COVIS, the verbal system uses
working memory to process feedback. If working memory is
directed to another task, then feedback processing is impaired in
this system, leading to a decrement in RB learning. In contrast, the
procedural system does not depend on working memory and so is
less affected by additional processing following feedback, result-
ing in little or no effect on II learning. The effect of disrupting
feedback on category learning was first investigated by Maddox et
al. (2004) and subsequently replicated by Stanton and Nosofsky. In
both experiments, after being given feedback on their categoriza-
tion response, participants were required to perform a memory
scanning task that occupied working memory. The manipulation of
interest was whether this task occurred immediately following
feedback or after a 2.5-s delay.

Figure 2a shows the results from Stanton and Nosofsky’s (2007)
Experiment 1 presented in the form of a state-trace plot. These data
show that across the four training blocks, RB performance was
selectively impaired by immediate presentation of the memory
scanning task. Importantly, the state-trace appears two-
dimensional since the data points do not clearly fall on a mono-
tonically increasing curve. However, when we conducted a statis-
tical analysis of these data, although the result approached
significance, it was not possible to reject the one-dimensional
model (�G2 � 4.92, p � .083). Given the apparent pattern in
Figure 2a, we suspected that this may have been due to the
precision of the data, which we increased by combining the first
two blocks and the last two blocks of trials. In this case, it was
possible to reject the one-dimensional model (�G2 � 4.98, p �
.014).3 In other words, these data demonstrate the involvement of
two or more latent variables affecting RB and II performance and
differentially affected by feedback disruption. This is consistent
with COVIS, which interprets these latent variables as the verbal
and procedural category learning systems.

COVIS assumes that when performance depends on the verbal
system, feedback disruption will impair performance. It follows
that if the RB structure in Figure 2a is replaced by a different RB
structure, the same pattern of results should occur since COVIS
assumes that all RB structures defined by simple, verbalizable
rules are learned by the verbal system. Figure 2b shows the
state-trace plot that results from combining performance on the II
structure from Stanton and Nosofsky’s (2007) Experiment 1 with
performance on the RB structure from their Experiment 2. The RB
structure in Experiment 1 consisted of stimuli varying on two

dimensions, one of which determined category membership, and is
labeled RB(2D) in Figure 2a. The RB structure in Experiment 2
consisted of stimuli varying on four dimensions of which one
determined category membership. This is labeled RB(4D) in Fig-
ure 2b. What is striking about these data is that the two-
dimensional pattern and corresponding dissociation apparent in
Figure 2a are no longer present. Instead, the data points appear to
fall on a single monotonically increasing curve, consistent with a
one-dimensional state-trace. Formal analysis supports this intu-
ition. The one-dimensional model could not be rejected both when
all four blocks were included (�G2 � 0.48, p � .361) and when
adjacent blocks were combined in the same way as the previous
analysis (�G2 � 0, p � 1). This change in the dimensionality of
the state-trace poses a challenge to COVIS since there is no
particular reason why the verbal system should not be involved in
the learning of both RB structures and therefore be equally im-
paired by the disruption of feedback processing. Although COVIS
can explain the two-dimensional state-trace in Figure 2a by pos-
tulating the involvement of different category learning systems, it
can only explain the one-dimensional state-trace in Figure 2b by
postulating the involvement of a single category learning system,
presumably the procedural system.4 However, the RB(4D) struc-
ture is no less verbalizable than the RB(2D) structure, and so it is
difficult to see why it cannot also be learned by the verbal system.

Outline of Experiments

In the four experiments following, we examined the effects of
delaying feedback following a categorization response and the
type of feedback provided—minimal or yes/no feedback versus
full or corrective feedback. Table 1 presents an outline of the
structure of these experiments. In each experiment, participants
learned to categorize either an RB or II category structure under
either immediate or delayed feedback. These conditions differed in
the duration of the interval between a response and the provision
of feedback; 0.5 s in the No Delay condition and 5 s in the Delay
condition. In both cases, a stimulus mask was presented during the
interval between response and feedback. In Experiments 1 and 3,
this was a Gabor patch that was both similar to the stimuli to be
categorized and varied from trial to trial. In Experiments 2 and 4,
the mask was a cross-hatch pattern that was dissimilar to the
stimuli and did not vary across trials. In Experiments 1 and 2,
feedback was minimal, while in Experiments 3 and 4, it was full.

The four experiments allowed us to investigate the following
questions: (a) Do feedback delay and feedback type dissociate RB
and II learning under the more stringent criteria of state-trace
analysis—that is, does variation in these factors lead to a two-

3 The results of such averaging need to be treated with some caution as
it may introduce distortions from combining data from different parts of the
outcome space. In the present case, the averaged data points are relatively
close together, which will tend to militate against these effects.

4 Alternatively, both systems may be in play but affected by the inde-
pendent variables in the same way (as discussed in the Appendix). In this
case, it just happens that learning the RB(4D) structure in Experiment 2 is
affected by variation in training and feedback interference in exactly the
same way as learning the II structure in Experiment 1. While possible, this
seems very unlikely.
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dimensional state-trace? (b) If so, does this depend upon the type
of mask? In other words, does the two-dimensional state-trace
become one-dimensional under conditions that should be irrele-
vant according to COVIS? We discuss the reasons why we exam-
ined this possibility after considering the results of Experiment 1.

Experiment 1

Experiment 1 examined the differential effects of feedback
delay and training block on RB and II learning under minimal
feedback and used a Gabor mask. It was based on the stimuli and
procedures used by Maddox and Ing (2005) in their replication of
the results found by Maddox et al. (2003). To address a potential
confound in the earlier study, Maddox and Ing compared an RB
category structure and an II category structure in which both
dimensions were relevant to the categorization response. We used
the same category structures in Experiment 1. We also replicated
their use of a Gabor mask between response and feedback, and
although it is not stated in the report, we presumed that this
feedback was minimal.

According to COVIS, feedback delay should primarily affect II
learning and have little or no effect on RB learning. Maddox and
Ing (2005) found that the presence of a 5-s delay selectively
impaired, but did not eliminate, II learning while having little

effect on RB learning. This conclusion was based on a marginally
significant interaction between feedback delay and category struc-
ture (p � .05). The aim of Experiment 1 was therefore to deter-
mine if this result meets the more stringent criteria of state-trace
analysis. If so, then it is consistent with the involvement of
multiple learning systems as postulated by COVIS.

Method

Participants. One hundred and thirty undergraduate students
from the University of Adelaide (Adelaide, South Australia, Aus-
tralia) participated in return for course credit or a payment of
AUD12. Each participant completed one experimental condition.
There were 34 participants assigned to the RB No Delay condition,
34 to the RB Delay condition, and 30 and 32 participants assigned
to the II No Delay and II Delay conditions, respectively. In all of
the experiments reported here, we followed Maddox and Ing
(2005) and our own previous work (Newell et al., 2010) by
adopting a learning criterion. Participants who did not exceed 27%
correct responses in the final block of training were excluded. We
used this criterion because the performance of those excluded was
not reliably different from chance (25%). Applying this criterion
excluded four and 10 participants from the RB No Delay and RB
Delay conditions, respectively, and four and 16 participants from
the II No Delay and II Delay conditions, respectively.

Stimuli and apparatus. The categorization stimuli were gen-
erated using the same procedures used by Maddox and Ing (2005).
The stimuli were sine wave gratings that varied in spatial fre-
quency and orientation. Twenty stimuli in each of the four cate-
gories were generated by sampling randomly from the same four
parameter distributions used by Maddox and Ing. These parame-
ters are shown in Table 2. Actual values of spatial frequency (f)
and orientation (o) were generated from a random sample (x, y)
from these distributions using the following transformations:
f � 0.25 � x/50, o � y.�/500. The stimuli were generated

Figure 2. Data from Stanton and Nosofsky (2007, Experiments 1 and 2). a: State-trace plot of mean proportion
correct from Experiment 1 (two-dimensional RB category structure). b: State-trace plot of mean II performance
from Experiment 1 against mean RB performance from Experiment 2 (four-dimensional category structure).
Error bars indicate standard errors. II � information-integration; RB � rule-based.

Table 1
Structure of Experiments 1–4

Experiment Conditions
Feedback

type Mask

1 Delay/no delay Minimal Gabor
2 Delay/no delay Minimal Pattern
3 Delay/no delay Full Gabor
4 Delay/no delay Full Pattern
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using MATLAB (Mathworks, Natick, MA) routines from the
Psychophysics Toolbox (Brainard, 1997). When presented, each
stimulus was 200 � 200 pixels and centered on the computer
screen.

Procedure. The experiment consisted of four 80-trial blocks.
Within each block, all 80 stimuli were presented in a random order
(with different orders for each subject). Participants were told to
learn which of four categories (labeled, 1, 2, 3, and 4) each
stimulus belonged to. On each trial, a stimulus was presented, and
participants terminated the display by pressing one of the keys
labeled 1–4 on the computer keyboard corresponding to Categories
1–4, respectively. Following the response, a mask appeared for
either 0.5-s (No Delay condition) or 5-s (Delay condition). The
mask was a Gabor patch that was twice the dimensions of the
stimulus (i.e., 400 � 400 pixels) and had frequency and orientation
values drawn at random from within the range of stimulus values.
Following presentation of the mask, feedback appeared on the
computer screen for 0.75 s. If the response was correct, the word
“Correct” was presented; otherwise, the word “Incorrect” was
presented. Following presentation of feedback, the screen was

blank for either 5 s (No Delay condition) or 0.5 s (Delay condition)
before the next trial commenced. The sequence and timing of these
events were same as those used by Maddox and Ing (2005).

At the end of each block of trials, participants were given
feedback on the number of correct responses in the previous block
and reminded of the level of chance performance (i.e., 25%).

Results and Discussion

The mean accuracy rates averaged across participants are pre-
sented in Figure 3. Figure 3a plots the data as a function of block
(1–4), category structure (RB vs. II), and feedback delay (No
Delay vs. Delay). Figure 3b plots the same data in the form of a
state-trace plot with axes defined by category structure. The inset
graph in Figure 3b shows the state-trace plot corresponding to all
participants (i.e., averaged over both learners and nonlearners). We
have shown previously that the inclusion of different proportions
of nonlearners across conditions can increase the dimensionality of
the state-trace (Newell et al., 2010) and include this additional
information to check that the apparent dimensionality of the state-
trace does not depend upon the exclusion of nonlearners. In neither
this nor subsequent experiments does the overall shape of the
state-trace change substantially if nonlearners are included.

We analyzed the data in two ways. First, a propos of the
manner of plotting the data in Figure 3a, we conducted a 2
(category structure) � 2 (feedback delay) � 4 (block) mixed-
design ANOVA. This revealed a main effect of block, F(3,
282) � 74.78, p � .001, indicating learning; a main effect of
category structure, F(1, 94) � 6.55, p � .012, indicating
superior accuracy overall for RB learning compared to II learn-
ing; no main effect of feedback delay, F(1, 94) � 2.91, p �
.091; but significant interactions between block and feedback
delay, F(3, 282) � 3.30, p � .021; between block and category
structure, F(3, 282) � 2.83, p � .039; between category structure
and feedback delay, F(1, 94) � 4.13, p � .045; and between block,
category structure, and feedback delay, F(3, 282) � 2.82, p �

Table 2
Category Distribution Parameters for the Stimuli Used in
Experiments 1–4 and in Maddox and Ing (2005)

Category structure �x �y �x
2 �y

2 covxy

Rule-based
Category A 268 93 75 75 0
Category B 268 157 75 75 0
Category C 332 93 75 75 0
Category D 332 157 75 75 0

Information-integration
Category A 268 125 75 75 0
Category B 300 157 75 75 0
Category C 300 93 75 75 0
Category D 332 125 75 75 0

Figure 3. Results of Experiment 1. a: Mean proportion correct as a function of category structure, feedback
delay, and block. Data are from learners who achieved greater than 27% correct in the final block of trials. b:
The same data in the form of a state-trace plot. Inset graph shows state-trace plot of all participants (learners and
nonlearners). Error bars in both panels indicate standard errors. II � information-integration; RB � rule-based.
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.039. The interactions with category structure indicate that feed-
back delay had a greater effect on II learning than RB learning and
that this difference increased across blocks.

Second, a propos of the manner of plotting the data in Figure 3b,
we conducted a formal state-trace analysis as described earlier. In
this and subsequent analyses, we imposed the following order
restrictions: (a) that performance does not decrease across training
blocks and (b) that performance does not increase with increased
feedback delay. The result was that we were able to reject the
one-dimensional model (�G2 � 6.88, p � .039). Although a
similar pattern of data was found when all participants were
included (see inset in Figure 3b), the result was not statistically
significant due to the inclusion of what amounts to error data from
nonlearners (�G2 � 3.03, p � .183).

The results of Experiment 1 replicate those found by Maddox et
al. (2003) and Maddox and Ing (2005). In the No Delay condition,
participants were able to learn both the RB and II category struc-
tures. However, in the Delay condition, while RB learning was
relatively unaffected, II learning was considerably impaired. This
is both consistent with the predictions of COVIS and inconsistent
with the hypothesis that only one category learning system or
latent variable is involved.

The role of the mask. As discussed earlier, previous research
has shown that relevant dissociations (and the dimensionality of
the state-trace) can be modulated by variables that ought to be
irrelevant according to COVIS (Newell et al., 2010; Nosofsky &
Kruschke, 2002; Nosofsky et al., 2005; Stanton & Nosofsky,
2007). A theme that emerges from this literature is that the out-
comes predicted by COVIS depend critically on levels of percep-
tual and criterial noise. Perceptual noise refers to uncertainty in the
location of a stimulus in perceptual space. Criterial noise refers to
uncertainty in the number and placement of category boundaries in
this space. Both forms of noise combine to impair learning by
increasing uncertainty about the location of the stimulus in relation
to the regions of perceptual space that map onto the response
categories.

Both perceptual and criterial noise motivated the choice of
manipulations used by Stanton and Nosofsky (2007) in their in-
vestigation of feedback interference. As shown in Figure 2b,

above, by increasing the number of dimensions in the RB category
structure, the differential effect of feedback interference could be
reduced if not eliminated. In the same study, a similar outcome
was obtained by manipulating perceptual noise, this time in rela-
tion to the II category structure (Stanton & Nosofsky, 2007,
Experiment 3). The moderating effect of criterial noise has also
been investigated in a recent study by Ell, Ing, and Maddox (2009)
that also focused on the effect of feedback delay. They compared
several two-dimensional RB category structures where category
membership depended on the value of one relevant dimension. The
structures differed only in the number of response categories.
When the number of categories increased to three, Ell et al.
observed a significant effect of feedback delay on learning even
though the category structure was RB. They interpreted this result
within the COVIS framework by postulating an effect on working
memory. As the number of boundaries increases, participants find
it increasingly difficult to remember their locations (i.e., there is an
increase in criterial noise), and this effect is exacerbated by de-
laying feedback.

On the basis of the finding by Ell et al. (2009), we hypothesized
that if participants attempt to learn the II structure using multiple
decision bounds, then their performance may be susceptible to the
effects of feedback delay (as was found in Experiment 1). We
further hypothesized that this detrimental effect could be reduced,
or even eliminated, by reducing the level of perceptual noise. One
way of achieving this would be to increase the discriminability of
the categories in the II condition. However, we were concerned
that this might change the ways in which participants may ap-
proach the task (i.e., affecting the nature of the rules they may
generate and test) and that changing the conditions for one cate-
gory structure and not the other would make the resulting pattern
of results difficult to interpret. For these reasons, we chose to
reduce perceptual noise by changing the nature of mask presented
between response and feedback.

In Experiment 1, this mask was a Gabor patch randomly drawn
from the range of frequency and orientation values of the stimuli
themselves (see Figure 4a for an example). Previous studies have
shown that memory for the properties of Gabor patches is dis-
rupted if a similar stimulus is presented during the retention

Figure 4. Example of (Panel a) a Gabor mask used in Experiments 1 and 3 and (Panel b) the cross-hatch pattern
mask used in Experiments 2 and 4.
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interval (Magnussen, 2000), thereby increasing the level of per-
ceptual noise. To reduce this level, we replaced the variable Gabor
mask with a fixed, cross-hatched, pattern mask (as shown in Figure
4b). If the effect of feedback delay on II learning is due to the
passage of time, as proposed by COVIS, then although the overall
level of learning may increase (or decrease) using this mask, II
learning should still be selectively impaired. If, on the other hand,
the relative impairment of II learning is due to the levels of
perceptual and/or criterial noise, then a reduction in perceptual
noise may be sufficient to overcome the selective effect of feed-
back delay.

Experiment 2

This experiment was identical to Experiment 1 except that the
mask, presented between response and feedback, was replaced by
a fixed cross-hatch pattern.

Method

Participants. Eighty undergraduate students from the Uni-
versity of New South Wales (Sydney, New South Wales, Austra-
lia) participated in return for course credit. There were initially 20
participants assigned to each experimental group, but after apply-
ing the learning criterion (�27% accuracy in the final block), two
participants were excluded from the II No Delay condition and
four and three participants from the II Delay and RB Delay
conditions, respectively.

Stimuli, design, and procedure. All aspects of the stimuli,
design, and procedure were identical to Experiment 1 with the
exception that a cross-hatched pattern was used to fill the 5-s
interval between making a response and receiving feedback in the
Delay conditions and the 0.5-s interval between response and
feedback in the No Delay conditions. The mask consisted of a set
of closely spaced black diagonal lines on a gray background—
matching the field on which the stimulus was presented (see

Figure 4b). The same mask was used on every trial and was the
same size as the Gabor mask used in Experiment 1.

Results and Discussion

The mean accuracy rates averaged across participants are pre-
sented in Figure 5. Figure 5a plots the data as a function of block
(1–4), category structure (RB vs. II), and feedback delay (No
Delay vs. Delay). Figure 5b plots the same data in the form of a
state-trace plot with axes defined by category structure. The inset
graph in Figure 5b shows the state-trace plot averaged over all
participants. Both Figures 5a and 5b demonstrate an improvement
in performance across blocks in all conditions, but the effect of
delay on II learning is much reduced compared to that observed in
Experiment 1.

A 2 (category structure) � 2 (feedback delay) � 4 (block)
mixed-design ANOVA revealed a main effect of block, F(3,
201) � 72.61, p � .001, indicating learning, and a main effect of
category structure, F(1, 67) � 7.80, p � .007, indicating superior
RB accuracy overall, but there was no main effect of feedback
delay (F � 1), and no interaction between feedback delay and
category structure (F � 1) or between feedback delay, category
structure, and block (F � 1).

The ANOVA results do not indicate any selective effect of
feedback delay on II learning. This was supported by formal
state-trace analysis, which failed to reject the one-dimensional
model (�G2 � 1.05, p � .243). Analysis of all participants
revealed a similar result (�G2 � 0.50, p � .364). Despite this, the
form of the state-trace in Figure 5b appears to suggest a two-
dimensional structure—the means for the Delay condition are
displaced relative to the corresponding means for the No Delay
condition, suggesting a small but possibly real effect. This impres-
sion, however, does not take into account the high level of corre-
lation in performance across blocks. The apparent consistency is a
necessary consequence of this correlation. The important point is

Figure 5. Results of Experiment 2. a: Proportion correct as a function of category structure, feedback delay,
and block. Data are from learners who achieved greater than 27% correct in the final block of trials. b: The same
data in the form of a state-trace plot. Inset graph shows state-trace plot of all participants (learners and
nonlearners). Error bars in both panels indicate standard errors. II � information-integration; RB � rule-based.
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that the effect, if it exists, is too small to be detected either by
state-trace analysis or by ANOVA. Nevertheless, bearing in mind
the admonition that the lack of a statistical effect in Experiment 2
does not mean that there is a statistically significant difference
between Experiments 1 and 2 (cf. Gelman & Stern, 2006; Nieu-
wenhuis, Forstmann, & Wagenmakers, 2011), we directly com-
pared the relative fits of the one-dimensional model to the data
from each experiment. Essentially, we asked the question whether
the �G2 observed in Experiment 1, which allowed us to reject the
one-dimensional model, was greater than the �G2 observed in
Experiment 2, which did not. To answer this question, we drew
random samples from each of the empirical distributions derived
from the two experiments and estimated the distribution of differ-
ences in fits. The observed difference in the fits for Experiments 1
and 2 (i.e., a difference of differences) was 5.83. The probability
of observing a difference at least this large given the null hypoth-
esis that the state-trace plots from both experiments are one-
dimensional is .039. We therefore conclude that the departure from
monotonicity observed in Experiment 1 is significantly greater
than that observed in Experiment 2.

A major prediction of COVIS, based on fundamental neurobi-
ological properties of the procedural system, is that learning by this
system should be impaired if feedback is delayed for as little as
2.5 s (Maddox et al., 2003). Although we confirmed that learning
of the II category structure was impaired by a 5-s delay (Experi-
ment 1), we also found that this effect was largely eliminated if a
variable Gabor patch mask, intervening between response and
feedback, was replaced by a fixed cross-hatch mask (Experiment
2). This poses a challenge for COVIS since the nature of the mask
should have no bearing on the effect of delay.

Our use of the Gabor mask followed the procedure used by
Maddox and Ing (2005) and Maddox et al. (2003) although the
function of the mask in those studies was not explained. One
possibility is that it serves to prevent visual processing of the
stimulus extending into the delay interval. If a visual representa-
tion of the stimulus were to persist during this interval, then it is
possible that activation may persist in relevant cells in the tail of
the caudate nucleus. If this activation were to last until the occur-
rence of the delayed dopamine-mediated reinforcement, some
learning by the procedural system could still take place. On this
view, given the selective effect of feedback delay, the Gabor mask
appears to be effective. The lack of a similar effect using the
cross-hatch mask might therefore be due to the ineffectiveness of
this mask in curtailing perceptual processing. Studies of forms of
visual persistence have identified at least three forms of visual
persistence: visible persistence, informational persistence, and ret-
inal afterimages (Coltheart, 1980). The time course of visible
persistence is of the order of 100 ms (Di Lollo, Clark, & Hogben,
1988), while that of informational persistence, or iconic memory,
is typically less than a second (Sperling, 1960). Consistent with
this, Bennett and Cortese (1996) suggested that the storage of
visual information from a Gabor patch was essentially complete
within 0.5 s. Given that Maddox et al. found impaired learning of
the II structure with delays of 2.5 s it is unlikely, even without a
mask, that these forms of visual persistence would have been
sufficient to allow the procedural system access to a stimulus
representation across the 5-s delay used in the present series of
experiments. This leaves the possibility that information may be

extracted from a prolonged retinal afterimage. Although afterim-
ages may last many seconds, their occurrence depends upon prop-
erties of the stimulus and the viewing conditions. Since partici-
pants viewed the relatively low-luminance stimuli in a well-lit
environment, the viewing conditions were not conducive to the
formation of an afterimage, and subjectively, no such images are
apparent. In addition, it is well known that any form of subsequent
retinal stimulation, consistent with both the Gabor and pattern
masks, is sufficient to eradicate any coherent afterimage.

Given that the two kinds of mask affect visual processing in
similar ways, the most likely difference between them lies in the
extent to which they differentially affect memory for the catego-
rized stimulus (Magnussen, 2000), which we have referred to as
perceptual noise. If memory for the stimulus is impaired, then
learning will be affected simply because participants will be un-
sure of the location of the stimulus in perceptual space. We return
to this point in the general discussion after first examining the
effect of feedback type.

Effect of feedback type. A second aim of the present study
was to examine the effect of feedback type on learning RB and II
category structures. Maddox et al. (2008) presented participants
with the same category structures used by Maddox and Ing (2005)
and varied the informativeness of feedback. In the minimal feed-
back condition, participants were told only that their response was
either correct or incorrect. In the full feedback conditions, partic-
ipants were additionally told the correct response if their response
was incorrect. COVIS predicts a differential effect of feedback
type on RB and II learning—in particular, full feedback should
benefit RB learning compared to minimal feedback, but it should
have little or no effect on II learning. As a result, this should lead
to a two-dimensional state-trace.

Figure 6 shows the results found by Maddox et al. (2008) in the
form of a state-trace plot.5 The filled data points in each condition
correspond to the mean levels of RB and II performance in each of
the six training blocks. This reveals a complex picture. Consistent
with the prediction of COVIS, full feedback improved RB learning
compared to minimal feedback. However, inconsistent with the
straightforward prediction of COVIS, full feedback impaired II
learning compared to minimal feedback. To account for these
results, Maddox et al. proposed that under full feedback, the verbal
system fails to relinquish control to the procedural system during
II learning despite the fact that it performs less well on this
structure.

Although Maddox et al. (2008) interpreted their results in terms
of the COVIS model, it is not clear that the data shown in Figure 6
describe a two-dimensional state-trace consistent with the involve-
ment of different category learning systems. In fact, despite the
appearance of a two-dimensional state-trace in Figure 6, we were
unable to reject the one-dimensional model6 (�G2 � 18.33, p �
.102). This mirrors the conclusions drawn from our earlier analysis
of the results found by Nosofsky et al. (2005). In both cases, a
significant interaction with category structure did not imply a
two-dimensional state-trace.

5 We are grateful to Todd Maddox for providing these data.
6 For this analysis, since feedback type is not expected to have the same

effect on RB and II learning, we specified an order restriction only on
blocks.
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The apparently different results found by state-trace analysis
and ANOVA reflect differences in their assumptions and aims
rather than any lack of statistical power in the former. ANOVA
assumes a strong linear relationship between RB and II learning,
while state-trace analysis allows this relationship to be nonlinear
but monotonic. This difference can be illustrated in relation to the
significant interaction between feedback type and category struc-
ture found by Maddox et al. (2008). This interaction is represented
by the two unfilled symbols in Figure 6 showing RB and II
performance averaged over all six blocks for the minimal feedback
condition (the unfilled circle) and for the full feedback condition
(the unfilled triangle). ANOVA detects a significant interaction if
the change in RB performance between minimal and full feedback
conditions differs from the change in II performance. This is
equivalent to the requirement that the slope of the line connecting
the two summary data points in Figure 6 differs from 1 (reflecting
a change in RB performance equal to the change in II perfor-
mance). Since the observed slope of this line is clearly not 1 (it is
closer to 	1), ANOVA detects a significant interaction. However,
as pointed out by Loftus (1978), this ignores the possibility of a
nonlinear relationship between RB and II performance—as ap-
pears ubiquitous in category learning data. In contrast, this as-
sumption is fundamental to state-trace analysis, which detects a
departure from monotonicity if the slope of the line connecting the
two data points is negative—a more conservative and appropriate
test.7 As it happens, when this test is applied to these data, the
one-dimensional model can be rejected (�G2 � 9.70, p � .013).
However, given the foregoing arguments, it is also possible that
averaging data from different parts of a nonlinear outcome space
may create a negative relationship where none exists. For this
reason, we place greater reliance on the state-trace analysis of all

the data in Figure 6 rather than that averaged over all training
blocks.

In summary, the results found by Maddox et al (2008) do not
lead to a clear conclusion. On the one hand, the claim that different
category learning systems are involved implies a two-dimensional
state-trace that, despite some suggestions in the data, cannot be
claimed to have been observed. On the other hand, when averaged
across training blocks, full feedback was found to improve RB
performance and impair II performance. To help resolve this
question, we repeated Experiment 1 under full feedback condi-
tions.

The following experiment, Experiment 3, is identical to Exper-
iment 1 with the exception that participants were provided with
full rather than minimal feedback. This experiment tested two
implications of COVIS as interpreted by Maddox et al. (2008).
First, to the extent that the procedural system is involved in II
learning under full feedback, it should be differentially affected by
feedback delay, and we should observe a two-dimensional state-
trace similar to that found in Experiment 1. However, if full
feedback leads to the greater involvement of the verbal system in
II learning, as proposed by Maddox et al., the two-dimensional
structure may be reduced.8 In the limit, if the verbal system
completely governs II learning, then only one system (or latent
variable) is in play, and the resulting state-trace will be one-
dimensional. Second, consistent with the results found by Maddox
et al., comparison of the No Delay conditions of Experiments 1
and 3 should replicate the effects of feedback type on RB and II
learning, resulting in a two-dimensional state-trace similar to that
shown in Figure 6.

Experiment 3

Experiment 3 was identical to Experiment 1 except that partic-
ipants were provided with full rather than minimal feedback on
each learning trial. The same variable Gabor mask was used.

Method

Participants. One hundred and fifty-nine undergraduate stu-
dents from the University of Adelaide participated in return for
course credit or a payment of AUD12. Each participant completed
one experimental condition, with 39 participants assigned to the
RB No Delay condition, 35 assigned to the II No Delay condition,
and 39 and 46 participants assigned to the RB Delay and II Delay
conditions, respectively. Applying the learning criterion (�27%

7 In our view, rejecting the hypothesis of a single category learning
system based on a failure of the linear model assumed by ANOVA is
analogous to rejecting the hypothesis that the earth goes around the sun by
finding that the trajectory is not a perfect circle. In both cases, there are
theoretically viable alternatives consistent with the data.

8 This means that the state-trace, while still two-dimensional, will appear
closer to being one-dimensional. The configuration of a pair of scissors
provides a concrete analogy to this idea. Points on the blades of the scissors
correspond to differences on the two experimental variables. When the
scissors are maximally open and the blades are at right angles, intrinsic
two-dimensionality is apparent. As the blades close, while technically
remaining two-dimensional, the pattern is less obvious. In the limit, the
blades finally close, and the structure becomes one-dimensional.

Figure 6. State-trace plot of the results found by Maddox, Love, Glass,
and Filoteo (2008). Filled symbols indicate mean proportion correct for
each training block. Error bars indicate standard errors. Unfilled symbols
indicate mean proportion correct averaged over training blocks (the circle
corresponds to the minimum [min] feedback condition; the triangle corre-
sponds to the full feedback condition). II � information-integration; RB �
rule-based.
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accuracy in the final block) excluded two participants from the RB
No Delay condition and six and three participants from the II
Delay and RB Delay conditions, respectively.

Stimuli, design, and procedure. All aspects of the stimuli,
design, and procedure were identical to Experiment 1 with the
exception that the nature of the corrective feedback was changed.
After a correct response, the following feedback appeared on the
computer screen: “Correct, that was Category x,” where x was the
corresponding key number (1–4) of the correct category. Simi-
larly, after an incorrect response the following feedback appeared:
“No, that was Category x.”

Results and Discussion

The mean accuracy rates averaged across participants who met
the learning criterion are shown in Figure 7. Figure 7a plots the
data as a function of block (1–4), category structure (RB vs. II),
and feedback delay (No Delay vs. Delay). Figure 7b plots the same
data in the form of a state-trace plot with axes defined by category
structure. The inset in this figure shows the state-trace plot for all
participants. These data show that there is an improvement across
blocks in all conditions but that the effect of delaying feedback is
still mixed. Although it is generally deleterious to both RB and II
learning, the effect of delay affects RB learning to a greater extent
early in training but affects II learning to a greater extent later in
training.

A 2 (category structure) � 2 (feedback delay) � 4 (block)
mixed-design ANOVA revealed a main effect of block, F(3,
432) � 130.09, p � .001, indicating learning; a main effect of
category structure, F(1, 144) � 22.38, p � .001, indicating supe-
rior accuracy overall for the RB structure; and a main effect of
feedback delay, F(1, 144) � 6.51, p � .012, indicating superior
accuracy in the No Delay conditions. Although the Category
Structure � Feedback Delay interaction was not significant, the
three-way interaction between category structure, feedback delay,
and block was, F(3, 432) � 4.24, p � .006.

Dimensionality of the feedback delay state-trace. COVIS
predicts that the state-trace shown in Figure 7b should be two-
dimensional although, because of the potentially greater involve-
ment of the verbal system in II learning, this may be less apparent
than that found in Experiment 1. While the overall shape of the
state-trace is consistent with this, formal analysis revealed that
although the result approached significance, the one-dimensional
model could not be rejected (�G2 � 4.67, p � .075). Analysis of
all participants revealed a similar result (�G2 � 2.15, p � .202).
However, direct comparison of the relative fits of the one-
dimensional model between Experiments 1 and 3 failed to reveal
a significant difference (�G2 � 2.21, p � .142). This result is best
considered indeterminate—we cannot reject the one-
dimensionality of the feedback delay state-trace, but neither can
we reject the hypothesis that the fit of the one-dimensional model
is significantly worse than that found for Experiment 1.

Dimensionality of the feedback type state-trace. Figure 8
shows mean accuracy rates averaged across participants who met
the learning criterion for the No Delay conditions of Experiments
1 and 3. Figure 8a plots the data as a function of block (1–4),
category structure (RB vs. II), and feedback type (minimal vs.
full). Figure 8b shows the same data in the form of a state-trace
plot with axes defined by category structure. The inset in this
figure shows the state-trace plot for all participants. We conducted
a formal state-trace analysis of the data shown in Figure 8b and
were unable to reject the one-dimensional model (�G2 � 3.97,
p � .199). Analysis of all participants revealed a similar result
(�G2 � 0.37, p � .587).

Effect of feedback type on RB and II learning. The data
from the No Delay conditions of Experiments 1 and 3 were
submitted to a 2 (category structure) � 2 (feedback type) � 4
(block) mixed-design ANOVA. This revealed a main effect of
block, F(3, 378) � 149.18, p � .001, indicating learning; a
significant effect of category structure, F(1, 126) � 4.46, p � .037,
indicating higher performance for RB than II structures; and an

Figure 7. Results of Experiment 3. a: Mean proportion correct as a function of category structure, feedback
delay, and block. Data are from learners who achieved greater than 27% correct in the final block of trials. b:
The same data in the form of a state-trace plot. Inset graph shows state-trace plot of all participants (learners and
nonlearners). Error bars in both panels indicate standard errors. II � information-integration; RB � rule-based.
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interaction between block and feedback type, F(3, 378) � 7.10,
p � .001, indicating that the detrimental effect of minimal feed-
back reduced as training progressed. In contrast to the results
found by Maddox et al. (2008), the interaction between feedback
type and category structure was not significant, F(1, 126) � 2.12,
p � .148. Nevertheless, the results do suggest that whereas full
feedback improves RB learning, it tends to impair II learning, at
least during the later training blocks. Separate analysis of RB
learning revealed a significant effect of block, F(3, 201) � 70.98,
p � .001, and a significant improvement in overall performance
under full feedback (mean difference � 0.09), t(67) � 1.73,
one-tailed p � .044. Analysis of II learning also revealed a
significant effect of block, F(3, 201) � 89.47, p � .001, and
although there was no main effect of feedback type (F � 1), the
Block � Feedback Type interaction was significant, F(3, 177) �
6.83, p � .001, consistent with improved performance with full
feedback in the first two blocks coupled with impaired perfor-
mance in the last two blocks of trials.

In summary, the results of Experiments 1 and 3 offer mixed
support for the variant of the COVIS model proposed by Maddox
et al. (2008). This model predicts that the state-trace for feedback
delay should be two-dimensional under full feedback, although the
ability to detect this should be reduced. The observed pattern of
results is consistent with this prediction, although we were unable
to formally reject the one-dimensional model. The model also
predicts that the state-trace under feedback type should also be
two-dimensional. However, in this case, we were unable to for-
mally reject the one-dimensional model. Finally, the model pre-
dicts that RB learning should be enhanced and II learning impaired
under full feedback. Consistent with this, we found a small posi-
tive effect of full feedback on RB learning, and although there was
no overall effect on II learning, full feedback improved II learning
early in training but impaired it later in training.

Although the results of Experiment 3 provide some support for
the COVIS model, the results of Experiment 2 (using the pattern
mask) suggest that much of the observed pattern of data may
depend on the type of mask used. For this reason, we repeated
Experiment 2 under full feedback conditions. Since, according to
COVIS, the type of mask is irrelevant to the effects of feedback
delay and, presumably, the effects of feedback type, the outcome
should be the same as found for Experiment 3. Alternatively, if the
results of Experiment 2 are replicated, there should be no differ-
ential effects of feedback delay and feedback type on RB and II
learning. In other words, both kinds of state-trace should be
one-dimensional.

Experiment 4

This experiment was identical to Experiment 2 except that the
pattern mask shown in Figure 4 was used.

Method

Eighty undergraduate students from the University of New
South Wales participated in return for course credit. There were
initially 20 participants assigned to each experimental group, but
after applying the learning criterion (�27% accuracy in the final
block), two participants were excluded from each of the II condi-
tions, and one participant was excluded from each of the RB
conditions.

All aspects of the stimuli, design, and procedure were identical
to Experiment 3 (i.e., full corrective feedback was given) with the
exception that the fixed pattern mask was used instead of the
variable Gabor mask.

Figure 8. The effect of feedback type in the No Delay conditions of Experiments 1 and 3. a: Mean proportion
correct as a function of category structure, feedback type, and block. Data are from learners who achieved greater
than 27% correct in the final block of trials. Note the change of scale on the y-axis compared to previous graphs.
b: The same data in the form of a state-trace plot. Inset graph shows state-trace plot of all participants (learners
and nonlearners). Error bars in both panels indicate standard errors. II � information-integration; RB �
rule-based.
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Results and Discussion

The mean accuracy rates averaged across participants are pre-
sented in Figure 9. Figure 9a plots the data as a function of block
(1–4), category structure (RB vs. II), and feedback delay (No
Delay vs. Delay). Figure 9b shows the same data in the form of a
state-trace plot with axes defined by category structure. The inset
graph shows the state-trace plot averaged over all participants. The
data show that there is an improvement across blocks in all
conditions but that the effect of delay on II learning is much
reduced.

A 2 (category structure) � 2 (feedback delay) � 4 (block)
mixed-design ANOVA revealed a main effect of block, F(3,
210) � 77.79, p � .001, indicating learning; a main effect of
category structure, F(1, 70) � 12.35, p � .001, indicating superior
RB accuracy overall; but no main effect of feedback delay (F � 1)
and no interaction between feedback delay and category structure
(F � 1) or between feedback delay, category structure, and block
(F � 1.14). There was a significant Block � Category Structure
interaction, F(3, 210) � 3.63, p � .014.

Dimensionality of the feedback delay state-trace. Figure 9b
shows little evidence of two-dimensionality. Formal state-trace
analysis revealed that the fit of the one-dimensional model was
identical to the fit of the order-restricted two-dimensional model
(�G2 � 0) and thus could not be rejected (p � 1). Analysis of all
participants revealed a similar result (�G2 � 0.31, p � .345). The
apparent violations of monotonicity in Figure 9b do not signify
bidimensionality. Instead, they correspond to violations of the
order restrictions of both the one-dimensional and two-
dimensional models due to feedback delay increasing rather than
decreasing RB performance in Blocks 2 and 3 (see Figure 9a).

Dimensionality of the feedback type state-trace. Figure 10
shows mean accuracy rates averaged across participants who met
the learning criterion for the No Delay conditions of Experiments
2 and 4. Figure 10a plots the data as a function of block (1–4),

category structure (RB vs. II), and feedback type (minimal vs.
full). Figure 10b shows the same data in the form of a state-trace
plot with axes defined by category structure. The inset in this
figure shows the state-trace plot for all participants. There is little
or no indication of a two-dimensional state-trace (�G2 � 0.01,
p � 0.874). Analysis of all participants revealed a similar result
(�G2 � 0.16, p � .744).

Effect of feedback type on RB and II learning. The data
from the No Delay conditions of Experiments 2 and 4 were
submitted to a 2 (category structure) � 2 (feedback type) � 4
(block) mixed-design ANOVA. This revealed a main effect of
block, F(3, 213) � 89.72, p � .001, indicating learning, and an
effect of category structure, F(1, 71) � 6.78, p � .011, indi-
cating greater accuracy for RB structures. No other effect was
significant. Separate analysis of RB and II learning revealed no
effect of feedback type or of a Block � Feedback Type inter-
action (all Fs � 1).

The results of Experiment 4 replicate those of Experiment 2 and
generalize them to full feedback conditions. When the variable
Gabor mask is replaced by an invariant pattern mask, there is no
evidence of a differential effect of either feedback delay or feed-
back type on RB and II learning.

General Discussion

We conducted four experiments that examined the effects of
feedback delay using different types of feedback and masks. The
results of these experiments are clear. When a variable Gabor
patch mask was used, there was a selective effect of feedback
delay on II learning that was greatest under minimal feedback and
reduced, but still detectable, under full feedback. These effects
were predicted by and are thus consistent with COVIS. According
to this model, any delay of more than a few seconds between
response and feedback should impair the procedural system that
usually determines II learning, and based on the argument pro-

Figure 9. Results of Experiment 4. a: Mean proportion correct as a function of category structure, feedback
delay, and block. Data are from learners who achieved greater than 27% correct in the final block of trials. Note
the change of scale on the x-axis compared to previous graphs. b: The same data in the form of a state-trace plot.
Inset graph shows state-trace plot of all participants (learners and nonlearners). Error bars in both panels indicate
standard errors. II � information-integration; RB � rule-based.
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posed by Maddox et al. (2008), this effect would be stronger under
minimal feedback than under full feedback. Both these predictions
were confirmed.

State-trace analysis also revealed that it was possible to reject
the hypothesis that RB learning and II learning in Experiment 1
could be attributed to a single latent variable. This is also consis-
tent with COVIS, which predicts differential involvement of the
verbal and procedural learning systems as a function of feedback
delay. Although a similar pattern of results was also found in
Experiment 3, it was not possible to reject the one-dimensional
model. Nevertheless, this is also consistent with the prediction
from COVIS that the effects of the verbal and procedural systems
would be less differentiated under these conditions.

Despite the success of COVIS in predicting the results of
Experiments 1 and 3, it was unable to account for the results of
Experiments 2 and 4. When the delay interval was filled by a fixed
pattern mask, there was no effect of feedback delay on either RB
or II learning. Since COVIS attributes the effect of delay to the
passage of time and the consequent disruption of neurobiological
processes in the tail of the caudate nucleus, it cannot readily
account for the elimination of the selective effect on II learning
under conditions that ought to be irrelevant. Within the COVIS
framework, these results can only be interpreted as reflecting the
singular involvement of the verbal system in both RB and II
learning, with the procedural system being somehow rendered
inoperative. There are three problems with this explanation. First,
it is obviously ad hoc. Second, there is no mechanism within
COVIS that would lead to control by the verbal system under these
circumstances. Third, it supposes that the verbal system can learn
the II category structure to a high level of accuracy. If this were the
case, it is unclear why the verbal system was unable to intervene
to improve II learning when this was impaired in Experiments 1
and 3 using the Gabor patch mask.

One caveat to these conclusions arises from the fact that Exper-
iments 1 and 3 tested more participants than Experiments 2 and 4

and so had greater power to detect a two-dimensional state-trace if
one was present. It is therefore possible that the failure to detect a
two-dimensional state-trace in Experiments 2 and 4 could be
attributed to this lack of power. To examine this question, we
increased the total power to detect an effect by combining Exper-
iments 1 and 3 (total n � 246) and Experiments 2 and 4 (total n �
145). Consistent with previous analyses, the one-dimensional
state-trace model could be rejected for Experiments 1 and 3
(�G2 � 11.67, p � .015), but not for Experiments 2 and 4 (�G2 �
0.34, p � .358). We then drew 10,000 random samples (without
replacement) of a subset of 145 participants from the combined
Experiments 1 and 3 and calculated the corresponding �G2 values.
If the difference between the Gabor and pattern masks is attribut-
able to differences in statistical power, the observed �G2 found for
Experiments 2 and 4 ought to be typical of that observed for a
random sample of the same size drawn from Experiments 1 and 3.
The mean �G2 of the 10,000 samples was 6.72. The observed �G2

of 11.67 (from all participants in Experiments 1 and 3) was greater
than 88% of these samples and is to be expected given the larger
n. Importantly, the observed �G2 of 0.34 (from Experiments 2 and
4) was greater than only 1.2% of the samples and therefore hardly
typical. We therefore conclude that it is unlikely that the size of the
effect observed in Experiments 2 and 4 is the same as that ob-
served in Experiments 1 and 3 but masked by a lower n.

Rather than being attributable to the mere passage of time, we
have suggested that the differential effect of feedback delay is due
to added perceptual noise that makes it difficult to locate the
categorized stimulus in perceptual space. Since presentation of a
Gabor patch during a retention interval interferes with memory for
the attributes of a similar, previously presented, Gabor patch, it is
likely that feedback processing would be disrupted in this way
(Magnussen, Greenlee, Asplund, & Dyrnes, 1991). For any cate-
gorization strategy, uncertainty concerning the identity of the
stimulus should impair learning because it would make it difficult
to accurately update knowledge of the relationship between the

Figure 10. The effect of feedback type in the No Delay conditions of Experiments 2 and 4. a: Mean proportion
correct as a function of category structure, feedback type, and block. Data are from learners who achieved greater
than 27% correct in the final block of trials. b: The same data in the form of a state-trace plot. Inset graph shows
state-trace plot of all participants (learners and nonlearners). Error bars in both panels indicate standard errors.
II � information-integration; RB � rule-based.
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stimulus and the relevant category structures. When a less similar
and fixed pattern mask is used, memory for the attributes of the
stimulus is likely to be less impaired, and learning should therefore
be relatively unaffected. In fact, the present results suggest that
under these conditions, learning is not affected at all.

While the proposed effect of perceptual noise on feedback
processing accounts for the difference between the two types of
mask, it does not directly account for the selective effect of the
Gabor patch mask on II learning (as observed in Experiments 1
and 3). Similarly, while COVIS accounts for this selective effect,
it does not directly account for the moderating effect of mask type.
The challenge for category learning models, including COVIS, is
to account for both effects simultaneously. We discuss this chal-
lenge in a later section.

A second aim of the present study was to examine the
differential effect of feedback type (minimal vs. full) on RB and
II learning. In their study, Maddox et al. (2008) found that full
feedback facilitated RB learning but impaired II learning. They
accounted for this outcome by proposing, within the COVIS
model, that full feedback encouraged the verbal system to
maintain control of the categorization response in the II condi-
tion to a greater degree under full feedback than under minimal
feedback. Comparison of the No Delay conditions of Experi-
ments 1 and 3, which used the variable Gabor patch mask and
were most directly comparable to the stimuli and procedure
used by Maddox et al., also revealed a differential effect of
feedback type on RB and II learning. Although the relevant
interactions between feedback type and category structure were
not significant using ANOVA and the one-dimensional state-
trace could not be rejected, when RB and II learning were
analyzed separately, we found a small effect of feedback type
on RB learning. Consistent with Maddox et al., this revealed
improved RB learning under full feedback. We also found an
interaction between feedback type and block for II learning,
which, broadly consistent with the results found by Maddox et
al., showed improved learning for the first two blocks of trials
and impaired learning in the last two blocks of trials.

However, in contrast to the pattern of results found in Experi-
ments 1 and 3, we found no evidence of a differential effect of
feedback type in Experiments 2 and 4. Comparison of the No
Delay conditions using the fixed pattern mask (although only
present for 0.5 s) revealed no effect of feedback type on either RB
or II learning. Once again, the predictions of COVIS were re-
stricted to the use of a variable, and confusable, mask.

The results of Experiments 1–4 may be summarized as follows.
When a variable Gabor patch mask was used to fill the interval
between response and feedback, consistent with the various pre-
dictions derived from COVIS, we found evidence of a differential
effect of feedback delay and, to a lesser extent, feedback type on
RB and II learning. When a fixed pattern mask was used to fill the
interval between response and feedback, contrary to the predic-
tions by COVIS, we found no evidence of a differential effect of
either feedback delay or feedback type on RB and II learning. We
have hypothesized that the moderating effect of mask type may be
understood in terms of the effect of perceptual noise on category
learning. The implications of these results for models of categori-
zation are discussed next.

State-Trace Analysis and Models of
Category Learning

We used state-trace analysis to determine a lower limit to the
number of latent variables required to account for the effects of
feedback delay and feedback type on RB and II learning. Depend-
ing on the substantive theory used to account for our results, the
latent variables revealed by state-trace analysis may be interpreted
in several different ways. In the case of formal models of catego-
rization, such as ALCOVE (Kruschke, 1992), GCM (Nosofsky,
1986), SUSTAIN (Love, Medin, & Gureckis, 2004), or even
COVIS (Ashby et al., 2011), the latent variables may be inter-
preted as corresponding to different parameters of the models.
However, some models demarcate sets of parameters that reflect,
according to the model, functionally distinct components. For
example, ATRIUM (Erickson & Kruschke, 1998) implements two
different learning strategies—one based on rules, the other on
exemplars—which may be described as corresponding either to
different modules (Kruschke, 2011) or to a mixture of experts
(Kalish, Lewandowsky, & Kruschke, 2004). In such instances,
depending upon the results of formal modeling, a two-dimensional
state-trace may indicate the differential involvement of parameters
reflecting these structures rather than parameters common to both.
Other models propose an even sharper distinction between com-
ponent structures. COVIS for example refers to its functionally
distinct components as systems, which are explicitly linked to
anatomically distinct systems in the brain (Ashby & Ell, 2001;
Ashby & Spiering, 2004). In this case, the latent variables identi-
fied by state-trace analysis may be interpreted as corresponding to
parameters or sets of parameters characterizing these different
systems.

The terminology used by models to describe their functional
components, whether as parameters or modules or systems, is not
directly relevant to state-trace analysis. A two-dimensional state-
trace no more implies the existence of separate systems than it
implies the existence of separate parameters or modules or any
other componential term. On the other hand, models such as
COVIS or ATRIUM that commit to a functional distinction be-
tween major constituent elements differentially involved in learn-
ing different kinds of category structure predict that it should be
possible to differentially affect the functions of these elements
consistent with a two-dimensional state-trace. This is a natural
interpretation of the results of Experiment 1. On this view, RB
learning depends more strongly on an RB strategy, while II learn-
ing may depend more strongly on an exemplar-based (or non-RB)
strategy. A two-dimensional state-trace results because feedback
delay has a greater effect on the exemplar-based strategy than on
the RB strategy, at least given high levels of perceptual noise.

The present results pose a challenge for all current models of
categorization. They reveal a complex interaction between feed-
back delay, feedback type, mask type, and category structure.
COVIS fails to predict this interaction because the mechanism it
proposes for some of these effects cannot account for the moder-
ating effect of mask type. According to COVIS, any delay between
response and feedback will impair the procedural system and,
hence, II learning. While a reduction in perceptual noise may
improve performance for both category structures, it is difficult to
see how this could overcome the selective deficit posited by
COVIS. On the other hand, it is also likely that other models will
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encounter difficulties in explaining other features of the data. The
results of Experiment 1, in particular, reveal a qualitative differ-
ence between the RB and II category structures. While we have
suggested that any reasonably complex model can account for such
differences through ad hoc changes in parameters, this is unlikely
to generate a satisfactory theoretical account. Models that treat RB
and II structures in essentially the same way are likely to have
difficulties accounting for these results in a natural and compelling
way. For example, we have suggested that the effect of feedback
delay using the variable Gabor patch mask may be attributable to
increased perceptual noise. This can be incorporated into a formal
model of category learning by adding different degrees of random
error to the representation of the stimulus prior to feedback-driven
learning. SUSTAIN is an example of a model in which the present
RB and II category structures are learned in essentially the same
way through the generation of clusters that link similar stimuli to
responses (Love et al., 2004). While SUSTAIN does possess a
mechanism to allocate attention to a single dimension when this is
sufficient to learn an RB category structure, this cannot be used to
differentiate RB and II learning in the present series of experi-
ments since the RB structure is defined in terms of the conjunction
of values on two dimensions (so attention must be paid to both). To
confirm this intuition, we investigated the capacity of SUSTAIN to
simulate the results of Experiment 1, adding perceptual noise
corresponding to the effect of the variable Gabor patch mask. We
found that perceptual noise had equivalent effects on both RB and
II learning and led to a one-dimensional state-trace. The same was
also true when we examined ALCOVE’s predictions in a similar
way. The challenge of these data for such models is thus compa-
rable to that posed by other examples of the coexistence of RB and
exemplar-based learning (Erickson & Kruschke, 1998, 2002).

Evidence for Multiple Category Learning Systems

The present set of results is consistent with recent evidence that
questions whether human category learning is best characterized in
terms of distinct, neurobiological systems. As outlined earlier and
discussed in detail by Newell et al. (2011), much of the evidence
based on dissociations that has appeared to support the multiple
learning systems view is challenged when viewed through the lens
of the more stringent state-trace analysis. Several dissociations that
have been thought to be central to the argument for multiple
systems do not survive this reanalysis. One such dissociation
concerns the selective effect of response reassignment on II cate-
gorization (Ashby et al., 2003; Maddox, Glass, O’Brien, Filoteo, &
Ashby, 2010; Nosofsky et al., 2005), which, as Figure 1 shows,
does not meet state-trace criteria for more than one latent variable.
Instead, these data suggest that a common learning mechanism
drives both RB and II learning but at different rates at the time of
transfer. Consistent with this, when these rates are equated, either
by making the RB structure more complex (Nosofsky et al., 2005,
Experiment 3) or by allowing participants extended practice with
the task (Hélie, Waldschmidt, & Ashby, 2010), the level of im-
pairment following response reassignment is found to be the same
for both structures.

The reassessment of dissociations also applies to evidence that
has been used to support the neurobiological aspects of COVIS.
According to this model, the verbal system depends upon a net-
work of brain regions that includes the head of the caudate nucleus,

while the procedural system depends upon neural structures in the
tail of the caudate nucleus. Evidence supporting this view is
derived from studies of patients with Parkinson’s disease (PD) and
Huntington’s disease (HD). PD patients often have damage to the
head of the caudate nucleus and so should be primarily impaired
on RB learning. HD patients have more extensive damage to both
the head and tail of the caudate nucleus and so should be impaired
on both RB and II learning. Thus, while both groups should show
impaired learning of RB structures (which they do), PD patients
should be relatively unimpaired learning at least some II structures.
Consistent with this, Filoteo, Maddox, Salmon, and Song (2005)
found that PD patients were impaired on the categorization of
complex (nonlinear) II category structures while they were rela-
tively unimpaired on the categorization of less complex (linear) II
structures. In contrast, Filoteo, Maddox, and Davis (2001) found
that HD patients were impaired on both linear and nonlinear II
tasks. This dissociation between the complexity of the II category
structure and level of impairment to the caudate nucleus (as
indexed by patient group) has been used to support the neurobio-
logical distinctions made by COVIS (Ashby & Ennis, 2006).
However, when these same data are presented in the form of a
state-trace plot, it is apparent that the levels of performance of the
patient groups and their respective normal controls fall on a single
monotonically increasing curve (Newell et al., 2011, Figure 7). As
with the response-switching paradigm, the reported dissociations
are a consequence of the shape of this curve (relatively flat in some
sections, less so in others) and provide no evidence either for the
existence of multiple learning systems or for the differential in-
volvement of the caudate nucleus in category learning.

Conclusion

A major strength of COVIS is that it attempts to integrate
biological and psychological data. In our view, the relationship
between these different sets of data is likely to be complex and to
evolve over time. The patterns of behavioral data that we have
presented and briefly reviewed pose a challenge for COVIS, at
least in its current form. At the same time, they also pose a
challenge for other models of categorization. Few of these models
are in a form that allows researchers to derive specific predictions
concerning the effects of different variables on learning different
kinds of category structures. While we have suggested how such
models may accommodate the interacting effects of feedback
delay and mask type, a formal model has not yet been developed.
We have argued that behavioral dissociations, in the form of
state-trace plots, do not selectively support a multiple systems
view but are instead consistent with a variety of architectures. In
our view, this insight provides a means of integrating computa-
tional, behavioral, and neurophysiological models that, while dif-
fering in their terminology, may not in fact differ greatly in their
underlying functionality. The challenge for all models is to account
for patterns of observed human performance rather than debating
the relative merits of terms such as systems, modules, and param-
eters. The development of a comprehensive model of perceptual
categorization that accounts for the empirical phenomena revealed
by this and other studies remains a challenge to the field.
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Appendix

State-Trace Analysis and the General Linear Model

In this section, we briefly examine the relationship between
state-trace analysis (STA) and the general linear model (GLM)
as assumed by the analysis of variance (ANOVA). To illustrate
this, we consider a simplified version of the experiments con-
ducted in the present article. In this simplified version, there are
three independent variables, labeled b, c, and d. In relation to
the current set of experiments, b corresponds to block, c to
category type, and d to delay. We assume that each variable has
two levels (although our conclusions do not depend on this)
and, without loss of generality, that the two levels are coded as
0 and 1, respectively.

Let y be the average outcome across the conditions of the
experiment. According to the GLM, this can be written as

y � a0 � a1b � a2d � a3bd � a4c � a5bc � a6dc � a7bdc.

(A1)

Here, the coefficients a0 to a7 correspond to the relevant effect
sizes including that for the intercept (a0). In the current application
of STA, we analyze the two levels of c separately. Let yci be
average outcome corresponding to the ith level of c. Then, from
Equation A1, we have the following:

yci � a0 � a1b � a2d � a3bd � a4ci � a5bci � a6dci � a7bdci,

(A2)

where the ci are now constants rather than variables. Substituting
into Equation A2 c1 � 0 and c2 � 1, we get

y0 � a0 � a1b � a2d � a3bd,

y1 � a0 � a1b � a2d � a3bd � a4 � a5b � a6d � a7bd,

� 
a0 � a4� � 
a1 � a5�b � 
a2 � a6�d � 
a3 � a7�bd.

(A3)

The plot of y1 against y0 for each combination of variables, b and
d, is called the state-trace on (variable) c. Under what conditions
is this state-trace one-dimensional? This question was examined
by Dunn and James (2003), who showed that the answer depends
on the nature of the function that maps the parameters of the
relevant model, b and d in the present case, onto the outcomes, y0

and y1. Specifically, the dimension of the state-trace is determined
by the rank of the Jacobian matrix of this function.A1 The Jacobian
matrix, Dy, is the matrix of partial derivatives of a multivariate
function with respect to each of the parameters of the function.
From Equation A3, this is given by

A1 Strictly speaking, it depends upon the rank of the integral Jacobian
matrix, formed by integrating the Jacobian matrix along a path between two
arbitrary points in the domain of the function. However, Dunn and James
(2003) also showed that if the function is linear, as in the present case, then the
integral Jacobian matrix and the Jacobian matrix are identical.

(Appendix continues)
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Dy � �
�y0

�b

�y0

�d
�y1

�b

�y1

�d
�

� � a1 � a3d a2 � a3b

a1 � a5� � 
a3 � a7�d 
a2 � a6� � 
a3 � a7�b �.

(A4)

Dunn and James showed that the state-trace on c is one-
dimensional if Dy is less than full rank for all b and d. If a matrix
is square, as in Equation A4, then it is less than full rank if and
only if its determinant is equal to zero. The determinant of Dy,
�Dy�, is given by

�Dy� � a1a6 � a2a5 � 
a1a7 � a3a5�b � 
a3a6 � a2a7�d,

which may go to zero (for all values of b and d) in any of several
different ways. Some of these are the following:

1. No main effect of or interaction with b (a1 � a3 � a5 �
a7 � 0).

2. No main effect of or interaction with d (a2 � a3 � a6 �
a7 � 0).

3. No main effects of b or d and no two-way interaction of
either variable with c (a1 � a2 � a5 � a6 � 0).

4. No main effects of b and d and no interaction (a1 � a2 �
a3 � 0).

5. No interaction of either b or d with c (a5 � a6 � a7 � 0).

6. All effects equal in size (a1 � a2 � a3 � a4 � a5 �
a6 � a7).

In practical terms, this means that if we conduct an ANOVA on the
data and it turns out that the pattern of effects is consistent with
the Jacobian matrix being less than full rank (e.g., if any of the
outcomes listed above occur), then the corresponding state-
trace on c will be one-dimensional. However, the opposite is not
true. If the pattern of effects is not of this sort, then it cannot be
concluded that the state-trace must be two-dimensional. In other
words, the fact that c interacts with one or more other variables
is not sufficient to conclude that the state-trace on c is two-
dimensional.
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