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Abstract

Accounts of how people learn functional relationships between continuous vari-
ables have tended to focus on two possibilities: that people are estimating explicit
functions, or that they are performing associative learning supported by similarity.
We provide a rational analysis of function learning, drawing on work on regres-
sion in machine learning and statistics. Using the equivalence of Bayesian linear
regression and Gaussian processes, we show that learning explicit rules and us-
ing similarity can be seen as two views of one solution to this problem. We use
this insight to define a Gaussian process model of human function learning that
combines the strengths of both approaches.

1 Introduction

Much research on how people acquire knowledge focuses on discrete structures, such as the nature
of categories or the existence of causal relationships. However, our knowledge of the world also
includes relationships between continuous variables, such as the difference between linear and ex-
ponential growth, or the form of causal relationships, such as how pressing the accelerator of a car
influences its velocity. Research on how people learn relationships between two continuous vari-
ables – known in the psychological literature as function learning – has tended to emphasize two
different ways in which people could be solving this problem. One class of theories (e.g., [1, 2, 3])
suggests that people are learning an explicit function from a given class, such as the polynomials
of degree k. This approach attributes rich representations to human learners, but has traditionally
given limited treatment to the question of how such representations could be acquired. A second
approach (e.g., [4, 5]) emphasizes the possibility that people learn by forming associations between
observed values of input and output variables, and generalize based on the similarity of new inputs
to old. This approach has a clear account of the underlying learning mechanisms, but faces chal-
lenges in explaining how people generalize so broadly beyond their experience, making predictions
about variable values that are significantly removed from their previous observations. Most recently,
hybrids of these two approaches have been proposed (e.g., [6, 7]), with explicit functions being
represented, but associative learning.

Previous models of human function learning have been oriented towards understanding the psycho-
logical processes by which people solve this problem. In this paper, we take a different approach,
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presenting a rational analysis of function learning, in the spirit of [8]. This rational analysis provides
a way to understand the relationship between the two approaches that have dominated previous work
– rules and similarity – and suggests how they might be combined. The basic strategy we pursue
is to consider the abstract computational problem involved in function learning, and then to explore
optimal solutions to that problem with the goal of shedding light on human behavior. In particular,
the problem of learning a functional relationship between two continuous variables is an instance of
regression, and has been extensively studied in machine learning and statistics.

There are a variety of solution to regression problems, but we focus on methods related to Bayesian
linear regression (e.g., [9]), which allow us to make the expectations of learners about the form of
functions explicit through a prior distribution. Bayesian linear regression is also directly related to
a nonparametric approach known as Gaussian process prediction (e.g., [10]), in which predictions
about the values of an output variable are based on the similarity between values of an input variable.
We use this relationship to connect the two traditional approaches to modeling function learning, as
it shows that learning rules that describe functions and specifying the similarity between stimuli for
use in associative learning are not mutually exclusive alternatives, but rather two views of the same
solution to this problem. We exploit this fact to define a rational model of human function learning
that incorporates the strengths of both approaches.

2 Models of human function learning

In this section we review the two traditional approaches to modeling human function learning – rules
and similarity – and some more recent hybrid approaches that combine the two.

2.1 Representing functions with rules

The idea that people might represent functions explicitly appears in one of the first papers on human
function learning [1]. This paper proposed that people assume a particular class of functions (such
as polynomials of degree k) and use the available observations to estimate the parameters of those
functions, forming a representation that goes beyond the observed values of the variables involved.
Consistent with this hypothesis, people learned linear and quadratic functions better than random
pairings of values for two variables, and extrapolated appropriately. Similar assumptions guided
subsequent work exploring the ease with which people learn functions from different classes (e.g.,
[2], and papers have tested statistical regression schemes as potential models of learning, examining
how well human responses were described by different forms of nonlinear regression (e.g., [3]).

2.2 Similarity and associative learning

Associative learning models propose that people do not learn relationships between continuous vari-
ables by explicitly learning rules, but by forging associations between observed variable pairs and
generalizing based on the similarity of new variable values to old. The first model to implement this
approach was the Associative-Learning Model (ALM; [4, 5]), in which input and output arrays are
used to represent a range of values for the two variables between which the functional relationship
holds. Presentation of an input activates input nodes close to that value, with activation falling off
as a Gaussian function of distance, explicitly implementing a theory of similarity in the input space.
Learned weights determine the activation of the output nodes, being a weighted linear function of the
activation of the input nodes. Associative learning for the weights is performed by applying gradient
descent on the squared error between current output activation and the correct value. In practice, this
approach performs well when interpolating between observed values, but poorly when extrapolating
beyond those values. As a consequence, the same authors introduced the Extrapolation-Association
Model (EXAM), which constructs a linear approximation to the output of the ALM when selecting
responses, producing a bias towards linearity that better matches human judgments.

2.3 Hybrid approaches

Several papers have explored methods for combining rule-like representations of functions with
associative learning. One example of such an approach is the set of rule-based models explored in
[6]. These models used the same kind of input representation as ALM and EXAM, with activation
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of a set of nodes similar to the input value. However, the models also feature a set of hidden units,
where each hidden unit corresponds to a different parameterization of a rule from a given class
(polynomial, Fourier, or logistic). The values of the hidden nodes – corresponding to the values
of the rules they instantiate – are combined linearly to obtain output predictions, with the weight
of each hidden node being learned through gradient descent (with a penalty for the curvature of
the functions involved). A more complex instance of this kind of approach is the Population of
Linear Experts (POLE) model [7], in which hidden units each represent different linear functions,
but the weights from input to hidden nodes indicate which linear function should be used to make
predictions for particular input values. As a consequence, the model can learn non-linear functions
by identifying a series of local linear approximations, and can even model situations in which people
seem to learn different functions in different parts of the input space.

3 Rational solutions to regression problems

The models outlined in the previous section all aim to describe the psychological processes involved
in human function learning. In this section, we consider the abstract computational problem under-
lying this task, using optimal solutions to this problem to shed light on both previous models and
human learning. Viewed abstractly, the computational problem behind function learning is to learn
a function f mapping from x to y from a set of real-valued observations xn = (x1, . . . , xn) and
tn = (t1, . . . , tn), where ti is assumed to be the true value yi = f(xi) obscured by additive noise.1
In machine learning and statistics, this is referred to as a regression problem. In this section, we dis-
cuss how this problem can be solved using Bayesian statistics, and how the result of this approach
is related to Gaussian processes. Our presentation follows that in [10].

3.1 Bayesian linear regression

Ideally, we would seek to solve our regression problem by combining some prior beliefs about the
probability of encountering different kinds of functions in the world with the information provided
by x and t. We can do this by applying Bayes’ rule, with

p(f |xn, tn) =
p(tn|f,xn)p(f)∫

F p(tn|f,xn)p(f) df
, (1)

where p(f) is the prior distribution over functions in the hypothesis space F , p(tn|f,xn) is the
probability of observing the values of tn if f were the true function, known as the likelihood, and
p(f |xn, tn) is the posterior distribution over functions given the observations xn and tn. In many
cases, the likelihood is defined by assuming that the values of ti are independent given f and xi,
being Gaussian with mean yi = f(xi) and variance σ2

t . Predictions about the value of the function
f for a new input xn+1 can be made by integrating over the posterior distribution,

p(yn+1|xn+1, tn,xn) =
∫

f

p(yn+1|f, xn+1)p(f |xn, tn) df, (2)

where p(yn+1|f, xn+1) is a delta function placing all of its mass on yn+1 = f(xn+1).

Performing the calculations outlined in the previous paragraph for a general hypothesis space F is
challenging, but becomes straightforward if we limit the hypothesis space to certain specific classes
of functions. If we take F to be all linear functions of the form y = b0 +xb1, then our problem takes
the familiar form of linear regression. To perform Bayesian linear regression, we need to define a
prior p(f) over all linear functions. Since these functions are identified by the parameters b0 and
b1, it is sufficient to define a prior over b = (b0, b1), which we can do by assuming that b follows
a multivariate Gaussian distribution with mean zero and covariance Σb. Applying Equation 1 then
results in a multivariate Gaussian posterior distribution on b (see [9]) with

E[b|xn, tn] =
(
σ2

t Σ
−1
b + XT

nXn

)−1
XT

n tn (3)

cov[b|xn,yn] =
(
Σ−1

b +
1
σ2

t

XT
nXn

)−1

(4)

1Following much of the literature on human function learning, we consider only one-dimensional functions,
but this approach generalizes naturally to the multi-dimensional case.
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where Xn = [1n xn] (ie. a matrix with a vector of ones horizontally concatenated with xn+1) Since
yn+1 is simply a linear function of b, applying Equation 2 yields a Gaussian predictive distribution,
with yn+1 having mean [1 xn+1]E[b|xn, tn] and variance [1 xn+1]cov[b|xn, tn][1 xn+1]T . The
predictive distribution for tn+1 is similar, but with the addition of σ2

t to the variance.

While considering only linear functions might seem overly restrictive, linear regression actually
gives us the basic tools we need to solve this problem for more general classes of functions. Many
classes of functions can be described as linear combinations of a small set of basis functions. For
example, all kth degree polynomials are linear combinations of functions of the form 1 (the constant
function), x, x2, . . . , xk. Letting φ(1), . . . , φ(k) denote a set of functions, we can define a prior
on the class of functions that are linear combinations of this basis by expressing such functions in
the form f(x) = b0 + φ(1)(x)b1 + . . . + φ(k)(x)bk and defining a prior on the vector of weights
b. If we take the prior to be Gaussian, we reach the same solution as outlined in the previous
paragraph, substituting Φ = [1n φ(1)(xn) . . . φ(k)(xn)] for X and [1 φ(1)(xn+1) . . . φ(k)(xn+1)]
for [1 xn+1], where φ(xn) = [φ(x1) . . . φ(xn)]T .

3.2 Gaussian processes

If our goal were merely to predict yn+1 from xn+1, yn, and xn, we might consider a different
approach, simply defining a joint distribution on yn+1 given xn+1 and conditioning on yn. For
example, we might take the yn+1 to be jointly Gaussian, with covariance matrix

Kn+1 =
(

Kn kn,n+1

kT
n,n+1 kn+1

)
(5)

where Kn depends on the values of xn, kn,n+1 depends on xn and xn+1, and kn+1 depends only
on xn+1. If we condition on yn, the distribution of yn+1 is Gaussian with mean kT

n,n+1K
−1
n y

and variance kn+1 − kT
n,n+1K

−1
n kn,n+1. This approach to prediction uses a Gaussian process, a

stochastic process that induces a Gaussian distribution on y based on the values of x. This approach
can also be extended to allow us to predict yn+1 from xn+1, tn, and xn by adding σ2

t In to Kn,
where In is the n × n identity matrix, to take into account the additional variance associated with
tn.

The covariance matrix Kn+1 is specified using a two-place function in x known as a kernel, with
Kij = K(xi, xj). Any kernel that results in an appropriate (symmetric, positive-definite) covariance
matrix for all x can be used. Common kinds of kernels include radial basis functions, e.g.,

K(xi, xj) = θ2
1 exp(− 1

θ2
2

(xi − xj)2) (6)

with values of y for which values of x are close being correlated, and periodic functions, e.g.,

K(xi, xj) = θ2
3 exp(θ2

4(cos(
2π

θ5
[xi − xj ]))) (7)

indicating that values of y for which values of x are close relative to the period θ3 are likely to be
highly correlated. Gaussian processes thus provide a flexible approach to prediction, with the kernel
defining which values of x are likely to have similar values of y.

3.3 Two views of regression

Bayesian linear regression and Gaussian processes appear to be quite different approaches. In
Bayesian linear regression, a hypothesis space of functions is identified, a prior on that space is
defined, and predictions are formed averaging over the posterior, while Gaussian processes simply
use the similarity between different values of x, as expressed through a kernel, to predict correlations
in values of y. It might thus come as a surprise that these approaches are equivalent.

Showing that Bayesian linear regression corresponds to Gaussian process prediction is straight-
forward. The assumption of linearity means that the vector yn+1 is equal to Xn+1b. It follows
that p(yn+1|xn+1) is a multivariate Gaussian distribution with mean zero and covariance matrix
Xn+1ΣbXT

n+1. Bayesian linear regression thus corresponds to prediction using Gaussian pro-
cesses, with this covariance matrix playing the role of Kn+1 above (ie. using the kernel func-
tion K(xi, xj) = [1 xi][1 xj ]T ). Using a richer set of basis functions corresponds to taking
Kn+1 = Φn+1ΣbΦT

n+1 (ie. K(xi, xj) = [1 φ(1)(xi) . . . φ(k)(xi)][1 φ(1)(xi) . . . φ(k)(xi)]T ).
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It is also possible to show that Gaussian process prediction can always be interpreted as Bayesian
linear regression, albeit with potentially infinitely many basis functions. Just as we can express
a covariance matrix in terms of its eigenvectors and eigenvalues, we can express a given kernel
K(xi, xj) in terms of its eigenfunctions φ and eigenvalues λ, with

K(xi, xj) =
∞∑

k=1

λkφ(k)(xi)φ(k)(xj) (8)

for any xi and xj . Using the results from the previous paragraph, any kernel can be viewed as the
result of performing Bayesian linear regression with a set of basis functions corresponding to its
eigenfunctions, and a prior with covariance matrix Σb = diag(λ).

These results establish an important duality between Bayesian linear regression and Gaussian pro-
cesses: for every prior on functions, there exists a corresponding kernel, and for every kernel, there
exists a corresponding prior on functions. Bayesian linear regression and prediction with Gaussian
processes are thus just two views of the same solution to regression problems.

4 Combining rules and similarity through Gaussian processes

The results outlined in the previous section suggest that learning rules and generalizing based on
similarity should not be viewed as conflicting accounts of human function learning. In this section,
we briefly highlight how previous accounts of function learning connect to statistical models, and
then use this insight to define a model that combines the strengths of both approaches.

4.1 Reinterpreting previous accounts of human function learning

The models presented above were chosen because the contrast between rules and similarity in
function learning is analogous to the difference between Bayesian linear regression and Gaussian
processes. The idea that human function learning can be viewed as a kind of statistical regres-
sion [1, 3] clearly connects directly to Bayesian linear regression. While there is no direct formal
correspondence, the basic ideas behind Gaussian process regression with a radial basis kernel and
similarity-based models such as ALM are closely related. In particular, ALM has many common-
alities with radial-basis function neural networks, which are directly related to Gaussian processes
[11]. Gaussian processes with radial-basis kernels can thus be viewed as implementing a simple
kind of similarity-based generalization, predicting similar y values for stimuli with similar x values.
Finally, the hybrid approach to rule learning taken in [6] is also closely related to Bayesian linear
regression. The rules represented by the hidden units serve as a basis set that specify a class of
functions, and applying penalized gradient descent on the weights assigned to those basis elements
serves as an online algorithm for finding the function with highest posterior probability [12].

4.2 Mixing functions in a Gaussian process model

The relationship between Gaussian processes and Bayesian linear regression suggests that we
can define a single model that exploits both similarity and rules in forming predictions. In
particular, we can do this by taking a prior that covers a broad class of functions – including
those consistent with a radial basis kernel – or, equivalently, modeling y as being produced by
a Gaussian process with a kernel corresponding to one of a small number of types. Specifi-
cally, we assume that observations are generated by choosing a type of function from the set
{Positive Linear, Negative Linear, Quadratic, Nonlinear}, where the probabilities of these alterna-
tives are defined by the vector π, and then sampling y from a Gaussian process with a kernel corre-
sponding to the appropriate class of functions. The relevant kernels are introduced in the previous
sections (taking “Nonlinear” to correspond to the radial basis kernel), with the “Positive Linear” and
“Negative Linear” kernels being derived in a similar way to the standard linear kernel but with the
mean of the prior on b being [0 1] and [1 −1] rather than simply zero.

Using this Gaussian process model allows a learner to make an inference about the type of function
from which their observations are drawn, as well as the properties of the function of that type. In
practice, we perform probabilistic inference using a Markov chain Monte Carlo (MCMC) algorithm
(see [13] for an introduction). This algorithm defines a Markov chain for which the stationary
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distribution is the distribution from which we wish to sample. In our case, this is the posterior
distribution over types and the hyperparameters for the kernels θ given the observations x and t.
The hyperparameters include θ1 and θ2 defined above and the noise in the observations σ2

t . Our
MCMC algorithm repeats two steps. The first step is sampling the type of function conditioned on
x, t, and the current value of θ, with the probability of each type being proportional to the product of
p(tn|xn) for the corresponding Gaussian process and the prior probability of that type as given by π.
The second step is sampling the value of θ given xn, tn, and the current type, which is done using
a Metropolis-Hastings procedure (see [13]), proposing a value for θ from a Gaussian distribution
centered on the current value and deciding whether to accept that value based on the product of the
probability it assigns to tn given xn and the prior p(θ). We use an uninformative prior on θ.

5 Testing the Gaussian process model

Following a recent review of computational models of function learning [6], we look at two quanti-
tative tests of Gaussian processes as an account of human function learning: reproducing the order
of difficulty of learning functions of different types, and extrapolation performance. As indicated
earlier, there is a large literature consisting of both models and data concerning human function
learning, and these simulations are intended to demonstrate the potential of the Gaussian process
model rather than to provide an exhaustive test of its performance.

5.1 Difficulty of learning

A necessary criterion for a theory of human function learning is accounting for which functions
people learn readily and which they find difficult – the relative difficulty of learning various func-
tions. Table 1 is an augmented version of results presented in [6] which compared several models
to the empirically observed difficulty of learning a range of functions. Each entry in the table is the
mean absolute deviation (MAD) of human or model responses from the actual value of the function,
evaluated over the stimuli presented in training. The MAD provides a measure of how difficult it is
for people or a given model to learn a function. The data reported for each set of studies are ordered
by increasing MAD (corresponding to increasing difficulty). In addition to reproducing the MAD
for the models in [6], the table includes results for seven Gaussian process (GP) models.

The seven GP models incorporated different kernel functions by adjusting their prior probability.
Drawing on the {Positive Linear, Negative Linear, Quadratic, Nonlinear} set of kernel functions, the
most comprehensive model took π = (0.5, 0.4, 0.09, 0.01).2 Six other GP models were examined
by assigning certain kernel functions zero prior probability and re-normalizing the modified value
of π so that the prior probabilities summed to one. The seven distinct GP models are presented in
Table 1 and labeled by the kernel functions with non-zero prior probability: Linear (Positive Linear
and Negative Linear), Quadratic, Nonlinear (Radial Basis Function), Linear and Quadratic, Linear
and Nonlinear, Quadratic and Nonlinear, and Linear, Quadratic, and Nonlinear. The last two rows of
Table 1 give the correlations between human and model performance across functions, expressing
quantitatively how well each model captured the pattern of human function learning behavior. The
GP models perform well according to this metric, providing a closer match to the human data than
any of the models considered in [6], with the quadratic kernel and the models with a mixture of
kernels tending to provide a closer match to human behavior.

5.2 Extrapolation performance

Predicting and explaining people’s capacity for generalization – from stimulus-response pairs to
judgments about a functional relationship between variables – is the second key component of our
account. This capacity is assessed in the way in which people extrapolate, making judgments about
stimuli they have not encountered before. Figure 1 shows mean human predictions for a linear, expo-
nential, and quadratic function (from [4]), together with the predictions of the most comprehensive
GP model (with Linear, Quadratic and Nonlinear kernel functions). The regions to the left and right
of the vertical lines represent extrapolation regions, being input values for which neither people nor

2The selection of these values was guided by results indicating the order of difficulty of learning functions
of these different types for human learners, but we did not optimize π with respect to the criteria reported here.
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Hybrid models Gaussian process models
Function Human ALM Poly Fourier Logistic Linear Quad RBF LQ LR QR LQR
Byun (1995, Expt 1B)

Linear .20 .04 .04 .05 .16 .0002 .004 .06 .0002 .0002 .001 .0001
Square root .35 .05 .06 .06 .19 .06 .02 .05 .02 .03 .02 .02

Byun (1995, Expt 1A)
Linear .15 .10 .33 .33 .17 .0003 .004 .04 .0002 .0002 .0009 .0001
Power, pos. acc. .20 .12 .37 .37 .24 .11 .004 .08 .004 .05 .003 .003
Power, neg. acc. .23 .12 .36 .36 .19 .06 .02 .05 .02 .03 .02 .02
Logarithmic .30 .14 .41 .41 .19 .10 .04 .07 .04 .05 .03 .03
Logistic .39 .18 .51 .52 .33 .20 .20 .22 .20 .18 .18 .18

Byun (1995, Expt 2)
Linear .18 .01 .18 .19 .12 .0003 .005 .05 .0003 .0002 .001 .0002
Quadratic .28 .03 .31 .31 .24 .20 .09 .14 .09 .12 .04 .04
Cyclic .68 .32 .41 .40 .68 .50 .50 .50 .50 .49 .49 .49

Delosh, Busemeyer, & McDaniel (1997)
Linear .10 .04 .11 .11 .04 .0005 .005 .03 .0005 .0003 .002 .0004
Exponential .15 .05 .17 .17 .02 .03 .01 .02 .01 .02 .009 .01
Quadratic .24 .07 .27 .27 .11 .1 .06 .07 .06 .06 .04 .04

Correlation of human and model performance
Linear 1.0 .83 .45 .45 .93 .93 .92 .92 .93 .93 .92 .92
Rank-order 1.0 .55 .51 .51 .77 .76 .80 .75 .83 .83 .82 .83

Table 1: Difficulty of learning results. Rows correspond to functions learned in experiments re-
viewed in [6]. Columns give the mean absolute deviation (MAD) from the true functions for human
learners and different models (Gaussian process models with multiple kernels are denoted by the
initials of their kernels, e.g., LQR = Linear, Quadratic, and Radial Basis Function). Human MAD
values represent sample means (for a single subject over trials, then over subjects), and reflect both
estimation and production errors, being higher than model MAD values which are computed using
deterministic model predictions and thus reflect only estimation error. The last two rows give the
linear and rank-order correlations of the human and model MAD values, providing an indication of
how well the model matches the difficulty people have in learning different functions.
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Figure 1: Extrapolation performance. (a)-(b) Mean predictions on linear, exponential, and quadratic
functions for (a) human participants (from [4]) and (b) a Gaussian process model with Linear,
Quadratic, and Nonlinear kernels. Training data were presented in the region between the verti-
cal lines, and extrapolation performance was evaluated outside this region. (c) Correlations between
human and model extrapolation. Gaussian process models are denoted as in Table 1.
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the model were trained. Both people and the model extrapolate near optimally on the linear func-
tion, and reasonably accurate extrapolation also occurs for the exponential and quadratic function.
However, there is a bias towards a linear slope in the extrapolation of the exponential and quadratic
functions, with extreme values of the quadratic and exponential function being overestimated.

Quantitative measures of extrapolation performance are shown in Figure 1 (c), which gives the
correlation between human and model predictions for EXAM [4, 5] and the seven GP models. While
none of the GP models produce quite as high a correlation as EXAM on all three functions, all of
the models except that with just the linear kernel produce respectable correlations. It is particularly
notable that this performance is achieved without the optimization of any free parameters, while the
predictions of EXAM were the result of optimizing two parameters for each of the three functions.

6 Conclusions

We have presented a rational account of human function learning, drawing on ideas from machine
learning and statistics to show that the two approaches that have dominated previous work – rules and
similarity – can be interpreted as two views of the same kind of optimal solution to this problem. Our
Gaussian process model combines the strengths of both approaches, using a mixture of kernels to
allow systematic extrapolation as well as sensitive non-linear interpolation. Tests of the performance
of this model on benchmark datasets show that it can capture some of the basic phenomena of human
function learning, and is competitive with existing process models. In future work, we aim to extend
this Gaussian process model to allow it to produce some of the more complex phenomena of human
function learning, such as non-monotonic extrapolation (via periodic kernels) and learning different
functions in different parts of the input space (via mixture modeling).
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